Az-r-ow
commited on
Commit
·
04fc5d3
1
Parent(s):
dcf66c8
feat(data_processing): Sentence processing function to extract logits and labels from a sentence
Browse files
app/travel_resolver/libs/nlp/data_processing.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nltk, re
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def get_tagged_content(sentence: str, tag: str) -> str:
|
| 5 |
+
"""
|
| 6 |
+
Extract the content between two tags in a sentence given the tag.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
sentence (str): The sentence to extract the content from.
|
| 10 |
+
tag (str): The tag to extract the content between.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
str: The content between the tags.
|
| 14 |
+
|
| 15 |
+
Example:
|
| 16 |
+
>>> get_tagged_content("Je voudrais voyager de <Dep>Nice<Dep> à <Arr>Clermont Ferrand<Arr>.", "<Dep>")
|
| 17 |
+
"Nice"
|
| 18 |
+
"""
|
| 19 |
+
tag_match = re.search(rf"{tag}(.*?){tag}", sentence)
|
| 20 |
+
if tag_match:
|
| 21 |
+
return tag_match.group(1)
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def process_sentence(sentence: str, dep_token="<Dep>", arr_token="<Arr>") -> tuple:
|
| 26 |
+
"""
|
| 27 |
+
Given a sentence, extract the departure and arrival locations and tokenize the sentence.
|
| 28 |
+
Then assign labels to the tokens based on whether they are part of the departure or arrival locations.
|
| 29 |
+
Finally, return the logits and labels will be returned.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
sentence (str): The sentence to process.
|
| 33 |
+
dep_token (str): The token to mark the departure location.
|
| 34 |
+
arr_token (str): The token to mark the arrival location.
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
tuple: A tuple containing the logits and labels (logits, labels).
|
| 38 |
+
"""
|
| 39 |
+
bare_sentence = sentence.replace(dep_token, "").replace(arr_token, "")
|
| 40 |
+
departure = get_tagged_content(sentence, dep_token)
|
| 41 |
+
arrival = get_tagged_content(sentence, arr_token)
|
| 42 |
+
tokenized_sentence = nltk.word_tokenize(bare_sentence)
|
| 43 |
+
labels = []
|
| 44 |
+
logits = []
|
| 45 |
+
for token in tokenized_sentence:
|
| 46 |
+
if token in departure:
|
| 47 |
+
departure_labels = [2] * len(token)
|
| 48 |
+
labels.extend(departure_labels)
|
| 49 |
+
elif token in arrival:
|
| 50 |
+
arrival_labels = [3] * len(token)
|
| 51 |
+
labels.extend(arrival_labels)
|
| 52 |
+
else:
|
| 53 |
+
default_labels = [1] * len(token)
|
| 54 |
+
labels.extend(default_labels)
|
| 55 |
+
int_chars = [ord(char) for char in token]
|
| 56 |
+
logits.extend(int_chars)
|
| 57 |
+
|
| 58 |
+
return (logits, labels)
|
requirements.txt
CHANGED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nltk==3.9.1
|
| 2 |
+
numpy==2.1.0
|