Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import os
|
|
| 5 |
import asyncio
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
import plotly.express as px
|
|
|
|
| 8 |
|
| 9 |
# Initialize the Hugging Face API
|
| 10 |
api = HfApi()
|
|
@@ -14,6 +15,11 @@ HTML_DIR = "generated_html_pages"
|
|
| 14 |
if not os.path.exists(HTML_DIR):
|
| 15 |
os.makedirs(HTML_DIR)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Default list of Hugging Face usernames
|
| 18 |
default_users = {
|
| 19 |
"users": [
|
|
@@ -40,11 +46,6 @@ async def fetch_user_content(username):
|
|
| 40 |
except Exception as e:
|
| 41 |
return {"username": username, "error": str(e)}
|
| 42 |
|
| 43 |
-
# Fetch all users concurrently
|
| 44 |
-
async def fetch_all_users(usernames):
|
| 45 |
-
tasks = [fetch_user_content(username) for username in usernames]
|
| 46 |
-
return await asyncio.gather(*tasks)
|
| 47 |
-
|
| 48 |
# Function to download the user page using requests
|
| 49 |
def download_user_page(username):
|
| 50 |
url = f"https://huggingface.co/{username}"
|
|
@@ -59,29 +60,45 @@ def download_user_page(username):
|
|
| 59 |
except Exception as e:
|
| 60 |
return None, str(e)
|
| 61 |
|
| 62 |
-
# Function to
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
# Streamlit app setup
|
| 84 |
-
st.title("Hugging Face User Page Downloader
|
| 85 |
|
| 86 |
# Text area with default list of usernames
|
| 87 |
user_input = st.text_area(
|
|
@@ -95,42 +112,41 @@ if st.button("Show User Content"):
|
|
| 95 |
if user_input:
|
| 96 |
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
# Collect statistics for Plotly graphs
|
| 99 |
stats = {"username": [], "models_count": [], "datasets_count": []}
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
st.markdown("### User Content Overview")
|
| 102 |
-
for
|
|
|
|
| 103 |
with st.container():
|
| 104 |
# Profile link
|
| 105 |
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
|
| 106 |
-
|
| 107 |
-
# Fetch models and datasets
|
| 108 |
-
user_data = asyncio.run(fetch_user_content(username))
|
| 109 |
if "error" in user_data:
|
| 110 |
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
|
| 111 |
else:
|
| 112 |
models = user_data["models"]
|
| 113 |
datasets = user_data["datasets"]
|
| 114 |
-
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
if
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
st.download_button(
|
| 121 |
-
label=f"📥 Download {username}'s Base64 Encoded HTML",
|
| 122 |
-
data=base64_html,
|
| 123 |
-
file_name=b64_filename,
|
| 124 |
-
mime="text/plain"
|
| 125 |
-
)
|
| 126 |
else:
|
| 127 |
-
st.error(f"Failed to
|
| 128 |
-
|
| 129 |
# Add to statistics
|
| 130 |
stats["username"].append(username)
|
| 131 |
stats["models_count"].append(len(models))
|
| 132 |
stats["datasets_count"].append(len(datasets))
|
| 133 |
-
|
| 134 |
# Display models
|
| 135 |
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
|
| 136 |
if models:
|
|
@@ -139,7 +155,7 @@ if st.button("Show User Content"):
|
|
| 139 |
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
|
| 140 |
else:
|
| 141 |
st.markdown("No models found. 🤷♂️")
|
| 142 |
-
|
| 143 |
# Display datasets
|
| 144 |
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
|
| 145 |
if datasets:
|
|
@@ -148,13 +164,24 @@ if st.button("Show User Content"):
|
|
| 148 |
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
|
| 149 |
else:
|
| 150 |
st.markdown("No datasets found. 🤷♀️")
|
| 151 |
-
|
| 152 |
st.markdown("---")
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
# Plotly graphs to visualize the number of models and datasets each user has
|
| 155 |
if stats["username"]:
|
| 156 |
st.markdown("### User Content Statistics")
|
| 157 |
-
|
| 158 |
# Number of models per user
|
| 159 |
fig_models = px.bar(
|
| 160 |
x=stats["username"],
|
|
@@ -163,7 +190,7 @@ if st.button("Show User Content"):
|
|
| 163 |
title="Number of Models per User"
|
| 164 |
)
|
| 165 |
st.plotly_chart(fig_models)
|
| 166 |
-
|
| 167 |
# Number of datasets per user
|
| 168 |
fig_datasets = px.bar(
|
| 169 |
x=stats["username"],
|
|
@@ -172,7 +199,7 @@ if st.button("Show User Content"):
|
|
| 172 |
title="Number of Datasets per User"
|
| 173 |
)
|
| 174 |
st.plotly_chart(fig_datasets)
|
| 175 |
-
|
| 176 |
else:
|
| 177 |
st.warning("Please enter at least one username. Don't be shy! 😅")
|
| 178 |
|
|
@@ -182,6 +209,6 @@ st.sidebar.markdown("""
|
|
| 182 |
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
|
| 183 |
2. Click **'Show User Content'**.
|
| 184 |
3. View each user's models and datasets along with a link to their Hugging Face profile.
|
| 185 |
-
4. **Download a
|
| 186 |
5. Check out the statistics visualizations below!
|
| 187 |
""")
|
|
|
|
| 5 |
import asyncio
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
import plotly.express as px
|
| 8 |
+
import zipfile # Importing zipfile to handle ZIP operations
|
| 9 |
|
| 10 |
# Initialize the Hugging Face API
|
| 11 |
api = HfApi()
|
|
|
|
| 15 |
if not os.path.exists(HTML_DIR):
|
| 16 |
os.makedirs(HTML_DIR)
|
| 17 |
|
| 18 |
+
# Directory to save the ZIP files
|
| 19 |
+
ZIP_DIR = "generated_zips"
|
| 20 |
+
if not os.path.exists(ZIP_DIR):
|
| 21 |
+
os.makedirs(ZIP_DIR)
|
| 22 |
+
|
| 23 |
# Default list of Hugging Face usernames
|
| 24 |
default_users = {
|
| 25 |
"users": [
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
return {"username": username, "error": str(e)}
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Function to download the user page using requests
|
| 50 |
def download_user_page(username):
|
| 51 |
url = f"https://huggingface.co/{username}"
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
return None, str(e)
|
| 62 |
|
| 63 |
+
# Function to create a ZIP archive of the HTML files
|
| 64 |
+
@st.cache_resource
|
| 65 |
+
def create_zip_of_files(files):
|
| 66 |
+
zip_name = "HuggingFace_User_Pages.zip" # Renamed for clarity
|
| 67 |
+
zip_file_path = os.path.join(ZIP_DIR, zip_name)
|
| 68 |
+
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
| 69 |
+
for file in files:
|
| 70 |
+
# Add each HTML file to the ZIP archive with its basename
|
| 71 |
+
zipf.write(file, arcname=os.path.basename(file))
|
| 72 |
+
return zip_file_path
|
| 73 |
+
|
| 74 |
+
# Function to generate a download link for the ZIP file
|
| 75 |
+
@st.cache_resource
|
| 76 |
+
def get_zip_download_link(zip_file):
|
| 77 |
+
with open(zip_file, 'rb') as f:
|
| 78 |
+
data = f.read()
|
| 79 |
+
b64 = base64.b64encode(data).decode()
|
| 80 |
+
href = f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(zip_file)}">📥 Download All HTML Pages as ZIP</a>'
|
| 81 |
+
return href
|
| 82 |
+
|
| 83 |
+
# Function to fetch all users concurrently
|
| 84 |
+
async def fetch_all_users(usernames):
|
| 85 |
+
tasks = [fetch_user_content(username) for username in usernames]
|
| 86 |
+
return await asyncio.gather(*tasks)
|
| 87 |
|
| 88 |
+
# Function to get all HTML files for the selected users
|
| 89 |
+
def get_all_html_files(usernames):
|
| 90 |
+
html_files = []
|
| 91 |
+
errors = {}
|
| 92 |
+
for username in usernames:
|
| 93 |
+
html_file, error = download_user_page(username)
|
| 94 |
+
if html_file:
|
| 95 |
+
html_files.append(html_file)
|
| 96 |
+
else:
|
| 97 |
+
errors[username] = error
|
| 98 |
+
return html_files, errors
|
| 99 |
|
| 100 |
# Streamlit app setup
|
| 101 |
+
st.title("Hugging Face User Page Downloader & Zipper 📄➕📦")
|
| 102 |
|
| 103 |
# Text area with default list of usernames
|
| 104 |
user_input = st.text_area(
|
|
|
|
| 112 |
if user_input:
|
| 113 |
username_list = [username.strip() for username in user_input.split('\n') if username.strip()]
|
| 114 |
|
| 115 |
+
# Fetch user content asynchronously
|
| 116 |
+
user_data_list = asyncio.run(fetch_all_users(username_list))
|
| 117 |
+
|
| 118 |
# Collect statistics for Plotly graphs
|
| 119 |
stats = {"username": [], "models_count": [], "datasets_count": []}
|
| 120 |
+
|
| 121 |
+
# List to store paths of successfully downloaded HTML files
|
| 122 |
+
successful_html_files = []
|
| 123 |
+
|
| 124 |
st.markdown("### User Content Overview")
|
| 125 |
+
for user_data in user_data_list:
|
| 126 |
+
username = user_data["username"]
|
| 127 |
with st.container():
|
| 128 |
# Profile link
|
| 129 |
st.markdown(f"**{username}** [🔗 Profile](https://huggingface.co/{username})")
|
| 130 |
+
|
|
|
|
|
|
|
| 131 |
if "error" in user_data:
|
| 132 |
st.warning(f"{username}: {user_data['error']} - Something went wrong! ⚠️")
|
| 133 |
else:
|
| 134 |
models = user_data["models"]
|
| 135 |
datasets = user_data["datasets"]
|
| 136 |
+
|
| 137 |
+
# Download the user's HTML page
|
| 138 |
+
html_file_path, download_error = download_user_page(username)
|
| 139 |
+
if html_file_path:
|
| 140 |
+
successful_html_files.append(html_file_path)
|
| 141 |
+
st.success(f"✅ Successfully downloaded {username}'s page.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
else:
|
| 143 |
+
st.error(f"❌ Failed to download {username}'s page: {download_error}")
|
| 144 |
+
|
| 145 |
# Add to statistics
|
| 146 |
stats["username"].append(username)
|
| 147 |
stats["models_count"].append(len(models))
|
| 148 |
stats["datasets_count"].append(len(datasets))
|
| 149 |
+
|
| 150 |
# Display models
|
| 151 |
with st.expander(f"🧠 Models ({len(models)})", expanded=False):
|
| 152 |
if models:
|
|
|
|
| 155 |
st.markdown(f"- [{model_name}](https://huggingface.co/{model.modelId})")
|
| 156 |
else:
|
| 157 |
st.markdown("No models found. 🤷♂️")
|
| 158 |
+
|
| 159 |
# Display datasets
|
| 160 |
with st.expander(f"📚 Datasets ({len(datasets)})", expanded=False):
|
| 161 |
if datasets:
|
|
|
|
| 164 |
st.markdown(f"- [{dataset_name}](https://huggingface.co/datasets/{dataset.id})")
|
| 165 |
else:
|
| 166 |
st.markdown("No datasets found. 🤷♀️")
|
| 167 |
+
|
| 168 |
st.markdown("---")
|
| 169 |
+
|
| 170 |
+
# Check if there are any successfully downloaded HTML files to zip
|
| 171 |
+
if successful_html_files:
|
| 172 |
+
# Create a ZIP archive of the HTML files
|
| 173 |
+
zip_file_path = create_zip_of_files(successful_html_files)
|
| 174 |
+
|
| 175 |
+
# Generate a download link for the ZIP file
|
| 176 |
+
zip_download_link = get_zip_download_link(zip_file_path)
|
| 177 |
+
st.markdown(zip_download_link, unsafe_allow_html=True)
|
| 178 |
+
else:
|
| 179 |
+
st.warning("No HTML files were successfully downloaded to create a ZIP archive.")
|
| 180 |
+
|
| 181 |
# Plotly graphs to visualize the number of models and datasets each user has
|
| 182 |
if stats["username"]:
|
| 183 |
st.markdown("### User Content Statistics")
|
| 184 |
+
|
| 185 |
# Number of models per user
|
| 186 |
fig_models = px.bar(
|
| 187 |
x=stats["username"],
|
|
|
|
| 190 |
title="Number of Models per User"
|
| 191 |
)
|
| 192 |
st.plotly_chart(fig_models)
|
| 193 |
+
|
| 194 |
# Number of datasets per user
|
| 195 |
fig_datasets = px.bar(
|
| 196 |
x=stats["username"],
|
|
|
|
| 199 |
title="Number of Datasets per User"
|
| 200 |
)
|
| 201 |
st.plotly_chart(fig_datasets)
|
| 202 |
+
|
| 203 |
else:
|
| 204 |
st.warning("Please enter at least one username. Don't be shy! 😅")
|
| 205 |
|
|
|
|
| 209 |
1. The text area is pre-filled with a list of Hugging Face usernames. You can edit this list or add more usernames.
|
| 210 |
2. Click **'Show User Content'**.
|
| 211 |
3. View each user's models and datasets along with a link to their Hugging Face profile.
|
| 212 |
+
4. **Download a ZIP archive** containing all the HTML pages by clicking the download link.
|
| 213 |
5. Check out the statistics visualizations below!
|
| 214 |
""")
|