BFZD233
commited on
Commit
·
5b3b0f4
1
Parent(s):
a209eeb
initial
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +5 -0
- Depth-Anything-V2/DA-2K.md +51 -0
- Depth-Anything-V2/LICENSE +201 -0
- Depth-Anything-V2/README.md +201 -0
- Depth-Anything-V2/app.py +88 -0
- Depth-Anything-V2/depth_anything_v2/__pycache__/dinov2.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/__pycache__/dpt.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2.py +415 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__init__.py +11 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/__init__.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/attention.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/block.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/drop_path.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/layer_scale.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/mlp.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/patch_embed.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/swiglu_ffn.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/attention.py +83 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/block.py +252 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/drop_path.py +35 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/layer_scale.py +28 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/mlp.py +41 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py +89 -0
- Depth-Anything-V2/depth_anything_v2/dinov2_layers/swiglu_ffn.py +63 -0
- Depth-Anything-V2/depth_anything_v2/dpt.py +233 -0
- Depth-Anything-V2/depth_anything_v2/util/__pycache__/blocks.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/util/__pycache__/transform.cpython-310.pyc +0 -0
- Depth-Anything-V2/depth_anything_v2/util/blocks.py +148 -0
- Depth-Anything-V2/depth_anything_v2/util/transform.py +158 -0
- Depth-Anything-V2/requirements.txt +6 -0
- Depth-Anything-V2/run.py +73 -0
- Depth-Anything-V2/run_video.py +92 -0
- LICENSE +21 -0
- README.md +369 -6
- abs_cost/abs_cost_kernel.cu +191 -0
- app.py +103 -0
- core/ManStereo.py +302 -0
- core/__init__.py +0 -0
- core/__pycache__/__init__.cpython-310.pyc +0 -0
- core/__pycache__/confidence.cpython-310.pyc +0 -0
- core/__pycache__/corr.cpython-310.pyc +0 -0
- core/__pycache__/extractor.cpython-310.pyc +0 -0
- core/__pycache__/extractor_depthany.cpython-310.pyc +0 -0
- core/__pycache__/fusion.cpython-310.pyc +0 -0
- core/__pycache__/geometry.cpython-310.pyc +0 -0
- core/__pycache__/raft_stereo_depthbeta_refine.cpython-310.pyc +0 -0
- core/__pycache__/update_disp.cpython-310.pyc +0 -0
- core/confidence.py +169 -0
- core/corr.py +309 -0
- core/extractor.py +300 -0
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dav2_models
|
| 2 |
+
ckpts
|
| 3 |
+
mast3r
|
| 4 |
+
Metric3D
|
| 5 |
+
Depth-Anything-V2/metric_depth
|
Depth-Anything-V2/DA-2K.md
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DA-2K Evaluation Benchmark
|
| 2 |
+
|
| 3 |
+
## Introduction
|
| 4 |
+
|
| 5 |
+

|
| 6 |
+
|
| 7 |
+
DA-2K is proposed in [Depth Anything V2](https://depth-anything-v2.github.io) to evaluate the relative depth estimation capability. It encompasses eight representative scenarios of `indoor`, `outdoor`, `non_real`, `transparent_reflective`, `adverse_style`, `aerial`, `underwater`, and `object`. It consists of 1K diverse high-quality images and 2K precise pair-wise relative depth annotations.
|
| 8 |
+
|
| 9 |
+
Please refer to our [paper](https://arxiv.org/abs/2406.09414) for details in constructing this benchmark.
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Usage
|
| 13 |
+
|
| 14 |
+
Please first [download the benchmark](https://huggingface.co/datasets/depth-anything/DA-2K/tree/main).
|
| 15 |
+
|
| 16 |
+
All annotations are stored in `annotations.json`. The annotation file is a JSON object where each key is the path to an image file, and the value is a list of annotations associated with that image. Each annotation describes two points and identifies which point is closer to the camera. The structure is detailed below:
|
| 17 |
+
|
| 18 |
+
```
|
| 19 |
+
{
|
| 20 |
+
"image_path": [
|
| 21 |
+
{
|
| 22 |
+
"point1": [h1, w1], # (vertical position, horizontal position)
|
| 23 |
+
"point2": [h2, w2], # (vertical position, horizontal position)
|
| 24 |
+
"closer_point": "point1" # we always set "point1" as the closer one
|
| 25 |
+
},
|
| 26 |
+
...
|
| 27 |
+
],
|
| 28 |
+
...
|
| 29 |
+
}
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
To visualize the annotations:
|
| 33 |
+
```bash
|
| 34 |
+
python visualize.py [--scene-type <type>]
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
**Options**
|
| 38 |
+
- `--scene-type <type>` (optional): Specify the scene type (`indoor`, `outdoor`, `non_real`, `transparent_reflective`, `adverse_style`, `aerial`, `underwater`, and `object`). Skip this argument or set <type> as `""` to include all scene types.
|
| 39 |
+
|
| 40 |
+
## Citation
|
| 41 |
+
|
| 42 |
+
If you find this benchmark useful, please consider citing:
|
| 43 |
+
|
| 44 |
+
```bibtex
|
| 45 |
+
@article{depth_anything_v2,
|
| 46 |
+
title={Depth Anything V2},
|
| 47 |
+
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
|
| 48 |
+
journal={arXiv:2406.09414},
|
| 49 |
+
year={2024}
|
| 50 |
+
}
|
| 51 |
+
```
|
Depth-Anything-V2/LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
Depth-Anything-V2/README.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
<h1>Depth Anything V2</h1>
|
| 3 |
+
|
| 4 |
+
[**Lihe Yang**](https://liheyoung.github.io/)<sup>1</sup> · [**Bingyi Kang**](https://bingykang.github.io/)<sup>2†</sup> · [**Zilong Huang**](http://speedinghzl.github.io/)<sup>2</sup>
|
| 5 |
+
<br>
|
| 6 |
+
[**Zhen Zhao**](http://zhaozhen.me/) · [**Xiaogang Xu**](https://xiaogang00.github.io/) · [**Jiashi Feng**](https://sites.google.com/site/jshfeng/)<sup>2</sup> · [**Hengshuang Zhao**](https://hszhao.github.io/)<sup>1*</sup>
|
| 7 |
+
|
| 8 |
+
<sup>1</sup>HKU   <sup>2</sup>TikTok
|
| 9 |
+
<br>
|
| 10 |
+
†project lead *corresponding author
|
| 11 |
+
|
| 12 |
+
<a href="https://arxiv.org/abs/2406.09414"><img src='https://img.shields.io/badge/arXiv-Depth Anything V2-red' alt='Paper PDF'></a>
|
| 13 |
+
<a href='https://depth-anything-v2.github.io'><img src='https://img.shields.io/badge/Project_Page-Depth Anything V2-green' alt='Project Page'></a>
|
| 14 |
+
<a href='https://huggingface.co/spaces/depth-anything/Depth-Anything-V2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
|
| 15 |
+
<a href='https://huggingface.co/datasets/depth-anything/DA-2K'><img src='https://img.shields.io/badge/Benchmark-DA--2K-yellow' alt='Benchmark'></a>
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
This work presents Depth Anything V2. It significantly outperforms [V1](https://github.com/LiheYoung/Depth-Anything) in fine-grained details and robustness. Compared with SD-based models, it enjoys faster inference speed, fewer parameters, and higher depth accuracy.
|
| 19 |
+
|
| 20 |
+

|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## News
|
| 24 |
+
- **2025-01-22:** [Video Depth Anything](https://videodepthanything.github.io) has been released. It generates consistent depth maps for super-long videos (e.g., over 5 minutes).
|
| 25 |
+
- **2024-12-22:** [Prompt Depth Anything](https://promptda.github.io/) has been released. It supports 4K resolution metric depth estimation when low-res LiDAR is used to prompt the DA models.
|
| 26 |
+
- **2024-07-06:** Depth Anything V2 is supported in [Transformers](https://github.com/huggingface/transformers/). See the [instructions](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2) for convenient usage.
|
| 27 |
+
- **2024-06-25:** Depth Anything is integrated into [Apple Core ML Models](https://developer.apple.com/machine-learning/models/). See the instructions ([V1](https://huggingface.co/apple/coreml-depth-anything-small), [V2](https://huggingface.co/apple/coreml-depth-anything-v2-small)) for usage.
|
| 28 |
+
- **2024-06-22:** We release [smaller metric depth models](https://github.com/DepthAnything/Depth-Anything-V2/tree/main/metric_depth#pre-trained-models) based on Depth-Anything-V2-Small and Base.
|
| 29 |
+
- **2024-06-20:** Our repository and project page are flagged by GitHub and removed from the public for 6 days. Sorry for the inconvenience.
|
| 30 |
+
- **2024-06-14:** Paper, project page, code, models, demo, and benchmark are all released.
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
## Pre-trained Models
|
| 34 |
+
|
| 35 |
+
We provide **four models** of varying scales for robust relative depth estimation:
|
| 36 |
+
|
| 37 |
+
| Model | Params | Checkpoint |
|
| 38 |
+
|:-|-:|:-:|
|
| 39 |
+
| Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true) |
|
| 40 |
+
| Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Base/resolve/main/depth_anything_v2_vitb.pth?download=true) |
|
| 41 |
+
| Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) |
|
| 42 |
+
| Depth-Anything-V2-Giant | 1.3B | Coming soon |
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
|
| 47 |
+
### Prepraration
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
git clone https://github.com/DepthAnything/Depth-Anything-V2
|
| 51 |
+
cd Depth-Anything-V2
|
| 52 |
+
pip install -r requirements.txt
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory.
|
| 56 |
+
|
| 57 |
+
### Use our models
|
| 58 |
+
```python
|
| 59 |
+
import cv2
|
| 60 |
+
import torch
|
| 61 |
+
|
| 62 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 63 |
+
|
| 64 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 65 |
+
|
| 66 |
+
model_configs = {
|
| 67 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 68 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 69 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 70 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
|
| 74 |
+
|
| 75 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
| 76 |
+
model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location='cpu'))
|
| 77 |
+
model = model.to(DEVICE).eval()
|
| 78 |
+
|
| 79 |
+
raw_img = cv2.imread('your/image/path')
|
| 80 |
+
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
If you do not want to clone this repository, you can also load our models through [Transformers](https://github.com/huggingface/transformers/). Below is a simple code snippet. Please refer to the [official page](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2) for more details.
|
| 84 |
+
|
| 85 |
+
- Note 1: Make sure you can connect to Hugging Face and have installed the latest Transformers.
|
| 86 |
+
- Note 2: Due to the [upsampling difference](https://github.com/huggingface/transformers/pull/31522#issuecomment-2184123463) between OpenCV (we used) and Pillow (HF used), predictions may differ slightly. So you are more recommended to use our models through the way introduced above.
|
| 87 |
+
```python
|
| 88 |
+
from transformers import pipeline
|
| 89 |
+
from PIL import Image
|
| 90 |
+
|
| 91 |
+
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf")
|
| 92 |
+
image = Image.open('your/image/path')
|
| 93 |
+
depth = pipe(image)["depth"]
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### Running script on *images*
|
| 97 |
+
|
| 98 |
+
```bash
|
| 99 |
+
python run.py \
|
| 100 |
+
--encoder <vits | vitb | vitl | vitg> \
|
| 101 |
+
--img-path <path> --outdir <outdir> \
|
| 102 |
+
[--input-size <size>] [--pred-only] [--grayscale]
|
| 103 |
+
```
|
| 104 |
+
Options:
|
| 105 |
+
- `--img-path`: You can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3) point it to a text file storing all image paths.
|
| 106 |
+
- `--input-size` (optional): By default, we use input size `518` for model inference. ***You can increase the size for even more fine-grained results.***
|
| 107 |
+
- `--pred-only` (optional): Only save the predicted depth map, without raw image.
|
| 108 |
+
- `--grayscale` (optional): Save the grayscale depth map, without applying color palette.
|
| 109 |
+
|
| 110 |
+
For example:
|
| 111 |
+
```bash
|
| 112 |
+
python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
### Running script on *videos*
|
| 116 |
+
|
| 117 |
+
```bash
|
| 118 |
+
python run_video.py \
|
| 119 |
+
--encoder <vits | vitb | vitl | vitg> \
|
| 120 |
+
--video-path assets/examples_video --outdir video_depth_vis \
|
| 121 |
+
[--input-size <size>] [--pred-only] [--grayscale]
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
***Our larger model has better temporal consistency on videos.***
|
| 125 |
+
|
| 126 |
+
### Gradio demo
|
| 127 |
+
|
| 128 |
+
To use our gradio demo locally:
|
| 129 |
+
|
| 130 |
+
```bash
|
| 131 |
+
python app.py
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
You can also try our [online demo](https://huggingface.co/spaces/Depth-Anything/Depth-Anything-V2).
|
| 135 |
+
|
| 136 |
+
***Note: Compared to V1, we have made a minor modification to the DINOv2-DPT architecture (originating from this [issue](https://github.com/LiheYoung/Depth-Anything/issues/81)).*** In V1, we *unintentionally* used features from the last four layers of DINOv2 for decoding. In V2, we use [intermediate features](https://github.com/DepthAnything/Depth-Anything-V2/blob/2cbc36a8ce2cec41d38ee51153f112e87c8e42d8/depth_anything_v2/dpt.py#L164-L169) instead. Although this modification did not improve details or accuracy, we decided to follow this common practice.
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
## Fine-tuned to Metric Depth Estimation
|
| 140 |
+
|
| 141 |
+
Please refer to [metric depth estimation](./metric_depth).
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
## DA-2K Evaluation Benchmark
|
| 145 |
+
|
| 146 |
+
Please refer to [DA-2K benchmark](./DA-2K.md).
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
## Community Support
|
| 150 |
+
|
| 151 |
+
**We sincerely appreciate all the community support for our Depth Anything series. Thank you a lot!**
|
| 152 |
+
|
| 153 |
+
- Apple Core ML:
|
| 154 |
+
- https://developer.apple.com/machine-learning/models
|
| 155 |
+
- https://huggingface.co/apple/coreml-depth-anything-v2-small
|
| 156 |
+
- https://huggingface.co/apple/coreml-depth-anything-small
|
| 157 |
+
- Transformers:
|
| 158 |
+
- https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2
|
| 159 |
+
- https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything
|
| 160 |
+
- TensorRT:
|
| 161 |
+
- https://github.com/spacewalk01/depth-anything-tensorrt
|
| 162 |
+
- https://github.com/zhujiajian98/Depth-Anythingv2-TensorRT-python
|
| 163 |
+
- ONNX: https://github.com/fabio-sim/Depth-Anything-ONNX
|
| 164 |
+
- ComfyUI: https://github.com/kijai/ComfyUI-DepthAnythingV2
|
| 165 |
+
- Transformers.js (real-time depth in web): https://huggingface.co/spaces/Xenova/webgpu-realtime-depth-estimation
|
| 166 |
+
- Android:
|
| 167 |
+
- https://github.com/shubham0204/Depth-Anything-Android
|
| 168 |
+
- https://github.com/FeiGeChuanShu/ncnn-android-depth_anything
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
## Acknowledgement
|
| 172 |
+
|
| 173 |
+
We are sincerely grateful to the awesome Hugging Face team ([@Pedro Cuenca](https://huggingface.co/pcuenq), [@Niels Rogge](https://huggingface.co/nielsr), [@Merve Noyan](https://huggingface.co/merve), [@Amy Roberts](https://huggingface.co/amyeroberts), et al.) for their huge efforts in supporting our models in Transformers and Apple Core ML.
|
| 174 |
+
|
| 175 |
+
We also thank the [DINOv2](https://github.com/facebookresearch/dinov2) team for contributing such impressive models to our community.
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
## LICENSE
|
| 179 |
+
|
| 180 |
+
Depth-Anything-V2-Small model is under the Apache-2.0 license. Depth-Anything-V2-Base/Large/Giant models are under the CC-BY-NC-4.0 license.
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
## Citation
|
| 184 |
+
|
| 185 |
+
If you find this project useful, please consider citing:
|
| 186 |
+
|
| 187 |
+
```bibtex
|
| 188 |
+
@article{depth_anything_v2,
|
| 189 |
+
title={Depth Anything V2},
|
| 190 |
+
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
|
| 191 |
+
journal={arXiv:2406.09414},
|
| 192 |
+
year={2024}
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
@inproceedings{depth_anything_v1,
|
| 196 |
+
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
|
| 197 |
+
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
|
| 198 |
+
booktitle={CVPR},
|
| 199 |
+
year={2024}
|
| 200 |
+
}
|
| 201 |
+
```
|
Depth-Anything-V2/app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import matplotlib
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import tempfile
|
| 8 |
+
from gradio_imageslider import ImageSlider
|
| 9 |
+
|
| 10 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 11 |
+
|
| 12 |
+
css = """
|
| 13 |
+
#img-display-container {
|
| 14 |
+
max-height: 100vh;
|
| 15 |
+
}
|
| 16 |
+
#img-display-input {
|
| 17 |
+
max-height: 80vh;
|
| 18 |
+
}
|
| 19 |
+
#img-display-output {
|
| 20 |
+
max-height: 80vh;
|
| 21 |
+
}
|
| 22 |
+
#download {
|
| 23 |
+
height: 62px;
|
| 24 |
+
}
|
| 25 |
+
"""
|
| 26 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 27 |
+
model_configs = {
|
| 28 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 29 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 30 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 31 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 32 |
+
}
|
| 33 |
+
encoder = 'vitl'
|
| 34 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
| 35 |
+
state_dict = torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location="cpu")
|
| 36 |
+
model.load_state_dict(state_dict)
|
| 37 |
+
model = model.to(DEVICE).eval()
|
| 38 |
+
|
| 39 |
+
title = "# Depth Anything V2"
|
| 40 |
+
description = """Official demo for **Depth Anything V2**.
|
| 41 |
+
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), or [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
|
| 42 |
+
|
| 43 |
+
def predict_depth(image):
|
| 44 |
+
return model.infer_image(image)
|
| 45 |
+
|
| 46 |
+
with gr.Blocks(css=css) as demo:
|
| 47 |
+
gr.Markdown(title)
|
| 48 |
+
gr.Markdown(description)
|
| 49 |
+
gr.Markdown("### Depth Prediction demo")
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
| 53 |
+
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
|
| 54 |
+
submit = gr.Button(value="Compute Depth")
|
| 55 |
+
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
|
| 56 |
+
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
|
| 57 |
+
|
| 58 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 59 |
+
|
| 60 |
+
def on_submit(image):
|
| 61 |
+
original_image = image.copy()
|
| 62 |
+
|
| 63 |
+
h, w = image.shape[:2]
|
| 64 |
+
|
| 65 |
+
depth = predict_depth(image[:, :, ::-1])
|
| 66 |
+
|
| 67 |
+
raw_depth = Image.fromarray(depth.astype('uint16'))
|
| 68 |
+
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 69 |
+
raw_depth.save(tmp_raw_depth.name)
|
| 70 |
+
|
| 71 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 72 |
+
depth = depth.astype(np.uint8)
|
| 73 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
| 74 |
+
|
| 75 |
+
gray_depth = Image.fromarray(depth)
|
| 76 |
+
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 77 |
+
gray_depth.save(tmp_gray_depth.name)
|
| 78 |
+
|
| 79 |
+
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
|
| 80 |
+
|
| 81 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
|
| 82 |
+
|
| 83 |
+
example_files = glob.glob('assets/examples/*')
|
| 84 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if __name__ == '__main__':
|
| 88 |
+
demo.queue().launch()
|
Depth-Anything-V2/depth_anything_v2/__pycache__/dinov2.cpython-310.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/__pycache__/dpt.cpython-310.pyc
ADDED
|
Binary file (5.99 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2.py
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 9 |
+
|
| 10 |
+
from functools import partial
|
| 11 |
+
import math
|
| 12 |
+
import logging
|
| 13 |
+
from typing import Sequence, Tuple, Union, Callable
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.utils.checkpoint
|
| 18 |
+
from torch.nn.init import trunc_normal_
|
| 19 |
+
|
| 20 |
+
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger("dinov2")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
| 27 |
+
if not depth_first and include_root:
|
| 28 |
+
fn(module=module, name=name)
|
| 29 |
+
for child_name, child_module in module.named_children():
|
| 30 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
| 31 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
| 32 |
+
if depth_first and include_root:
|
| 33 |
+
fn(module=module, name=name)
|
| 34 |
+
return module
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class BlockChunk(nn.ModuleList):
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
for b in self:
|
| 40 |
+
x = b(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class DinoVisionTransformer(nn.Module):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
img_size=224,
|
| 48 |
+
patch_size=16,
|
| 49 |
+
in_chans=3,
|
| 50 |
+
embed_dim=768,
|
| 51 |
+
depth=12,
|
| 52 |
+
num_heads=12,
|
| 53 |
+
mlp_ratio=4.0,
|
| 54 |
+
qkv_bias=True,
|
| 55 |
+
ffn_bias=True,
|
| 56 |
+
proj_bias=True,
|
| 57 |
+
drop_path_rate=0.0,
|
| 58 |
+
drop_path_uniform=False,
|
| 59 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
| 60 |
+
embed_layer=PatchEmbed,
|
| 61 |
+
act_layer=nn.GELU,
|
| 62 |
+
block_fn=Block,
|
| 63 |
+
ffn_layer="mlp",
|
| 64 |
+
block_chunks=1,
|
| 65 |
+
num_register_tokens=0,
|
| 66 |
+
interpolate_antialias=False,
|
| 67 |
+
interpolate_offset=0.1,
|
| 68 |
+
):
|
| 69 |
+
"""
|
| 70 |
+
Args:
|
| 71 |
+
img_size (int, tuple): input image size
|
| 72 |
+
patch_size (int, tuple): patch size
|
| 73 |
+
in_chans (int): number of input channels
|
| 74 |
+
embed_dim (int): embedding dimension
|
| 75 |
+
depth (int): depth of transformer
|
| 76 |
+
num_heads (int): number of attention heads
|
| 77 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
| 78 |
+
qkv_bias (bool): enable bias for qkv if True
|
| 79 |
+
proj_bias (bool): enable bias for proj in attn if True
|
| 80 |
+
ffn_bias (bool): enable bias for ffn if True
|
| 81 |
+
drop_path_rate (float): stochastic depth rate
|
| 82 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
| 83 |
+
weight_init (str): weight init scheme
|
| 84 |
+
init_values (float): layer-scale init values
|
| 85 |
+
embed_layer (nn.Module): patch embedding layer
|
| 86 |
+
act_layer (nn.Module): MLP activation layer
|
| 87 |
+
block_fn (nn.Module): transformer block class
|
| 88 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
| 89 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
| 90 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
| 91 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
| 92 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
| 93 |
+
"""
|
| 94 |
+
super().__init__()
|
| 95 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
| 96 |
+
|
| 97 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 98 |
+
self.num_tokens = 1
|
| 99 |
+
self.n_blocks = depth
|
| 100 |
+
self.num_heads = num_heads
|
| 101 |
+
self.patch_size = patch_size
|
| 102 |
+
self.num_register_tokens = num_register_tokens
|
| 103 |
+
self.interpolate_antialias = interpolate_antialias
|
| 104 |
+
self.interpolate_offset = interpolate_offset
|
| 105 |
+
|
| 106 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
| 107 |
+
num_patches = self.patch_embed.num_patches
|
| 108 |
+
|
| 109 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 110 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 111 |
+
assert num_register_tokens >= 0
|
| 112 |
+
self.register_tokens = (
|
| 113 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if drop_path_uniform is True:
|
| 117 |
+
dpr = [drop_path_rate] * depth
|
| 118 |
+
else:
|
| 119 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
| 120 |
+
|
| 121 |
+
if ffn_layer == "mlp":
|
| 122 |
+
logger.info("using MLP layer as FFN")
|
| 123 |
+
ffn_layer = Mlp
|
| 124 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
| 125 |
+
logger.info("using SwiGLU layer as FFN")
|
| 126 |
+
ffn_layer = SwiGLUFFNFused
|
| 127 |
+
elif ffn_layer == "identity":
|
| 128 |
+
logger.info("using Identity layer as FFN")
|
| 129 |
+
|
| 130 |
+
def f(*args, **kwargs):
|
| 131 |
+
return nn.Identity()
|
| 132 |
+
|
| 133 |
+
ffn_layer = f
|
| 134 |
+
else:
|
| 135 |
+
raise NotImplementedError
|
| 136 |
+
|
| 137 |
+
blocks_list = [
|
| 138 |
+
block_fn(
|
| 139 |
+
dim=embed_dim,
|
| 140 |
+
num_heads=num_heads,
|
| 141 |
+
mlp_ratio=mlp_ratio,
|
| 142 |
+
qkv_bias=qkv_bias,
|
| 143 |
+
proj_bias=proj_bias,
|
| 144 |
+
ffn_bias=ffn_bias,
|
| 145 |
+
drop_path=dpr[i],
|
| 146 |
+
norm_layer=norm_layer,
|
| 147 |
+
act_layer=act_layer,
|
| 148 |
+
ffn_layer=ffn_layer,
|
| 149 |
+
init_values=init_values,
|
| 150 |
+
)
|
| 151 |
+
for i in range(depth)
|
| 152 |
+
]
|
| 153 |
+
if block_chunks > 0:
|
| 154 |
+
self.chunked_blocks = True
|
| 155 |
+
chunked_blocks = []
|
| 156 |
+
chunksize = depth // block_chunks
|
| 157 |
+
for i in range(0, depth, chunksize):
|
| 158 |
+
# this is to keep the block index consistent if we chunk the block list
|
| 159 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
| 160 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
| 161 |
+
else:
|
| 162 |
+
self.chunked_blocks = False
|
| 163 |
+
self.blocks = nn.ModuleList(blocks_list)
|
| 164 |
+
|
| 165 |
+
self.norm = norm_layer(embed_dim)
|
| 166 |
+
self.head = nn.Identity()
|
| 167 |
+
|
| 168 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
| 169 |
+
|
| 170 |
+
self.init_weights()
|
| 171 |
+
|
| 172 |
+
def init_weights(self):
|
| 173 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
| 174 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
| 175 |
+
if self.register_tokens is not None:
|
| 176 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
| 177 |
+
named_apply(init_weights_vit_timm, self)
|
| 178 |
+
|
| 179 |
+
def interpolate_pos_encoding(self, x, w, h):
|
| 180 |
+
previous_dtype = x.dtype
|
| 181 |
+
npatch = x.shape[1] - 1
|
| 182 |
+
N = self.pos_embed.shape[1] - 1
|
| 183 |
+
if npatch == N and w == h:
|
| 184 |
+
return self.pos_embed
|
| 185 |
+
pos_embed = self.pos_embed.float()
|
| 186 |
+
class_pos_embed = pos_embed[:, 0]
|
| 187 |
+
patch_pos_embed = pos_embed[:, 1:]
|
| 188 |
+
dim = x.shape[-1]
|
| 189 |
+
w0 = w // self.patch_size
|
| 190 |
+
h0 = h // self.patch_size
|
| 191 |
+
# we add a small number to avoid floating point error in the interpolation
|
| 192 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
| 193 |
+
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
|
| 194 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
| 195 |
+
# w0, h0 = w0 + 0.1, h0 + 0.1
|
| 196 |
+
|
| 197 |
+
sqrt_N = math.sqrt(N)
|
| 198 |
+
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
| 199 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 200 |
+
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
| 201 |
+
scale_factor=(sx, sy),
|
| 202 |
+
# (int(w0), int(h0)), # to solve the upsampling shape issue
|
| 203 |
+
mode="bicubic",
|
| 204 |
+
antialias=self.interpolate_antialias
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
assert int(w0) == patch_pos_embed.shape[-2]
|
| 208 |
+
assert int(h0) == patch_pos_embed.shape[-1]
|
| 209 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 210 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
| 211 |
+
|
| 212 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
| 213 |
+
B, nc, w, h = x.shape
|
| 214 |
+
x = self.patch_embed(x)
|
| 215 |
+
if masks is not None:
|
| 216 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
| 217 |
+
|
| 218 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
| 219 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
| 220 |
+
|
| 221 |
+
if self.register_tokens is not None:
|
| 222 |
+
x = torch.cat(
|
| 223 |
+
(
|
| 224 |
+
x[:, :1],
|
| 225 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
| 226 |
+
x[:, 1:],
|
| 227 |
+
),
|
| 228 |
+
dim=1,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
return x
|
| 232 |
+
|
| 233 |
+
def forward_features_list(self, x_list, masks_list):
|
| 234 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
| 235 |
+
for blk in self.blocks:
|
| 236 |
+
x = blk(x)
|
| 237 |
+
|
| 238 |
+
all_x = x
|
| 239 |
+
output = []
|
| 240 |
+
for x, masks in zip(all_x, masks_list):
|
| 241 |
+
x_norm = self.norm(x)
|
| 242 |
+
output.append(
|
| 243 |
+
{
|
| 244 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 245 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 246 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 247 |
+
"x_prenorm": x,
|
| 248 |
+
"masks": masks,
|
| 249 |
+
}
|
| 250 |
+
)
|
| 251 |
+
return output
|
| 252 |
+
|
| 253 |
+
def forward_features(self, x, masks=None):
|
| 254 |
+
if isinstance(x, list):
|
| 255 |
+
return self.forward_features_list(x, masks)
|
| 256 |
+
|
| 257 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
| 258 |
+
|
| 259 |
+
for blk in self.blocks:
|
| 260 |
+
x = blk(x)
|
| 261 |
+
|
| 262 |
+
x_norm = self.norm(x)
|
| 263 |
+
return {
|
| 264 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 265 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 266 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 267 |
+
"x_prenorm": x,
|
| 268 |
+
"masks": masks,
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
| 272 |
+
x = self.prepare_tokens_with_masks(x)
|
| 273 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 274 |
+
output, total_block_len = [], len(self.blocks)
|
| 275 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 276 |
+
for i, blk in enumerate(self.blocks):
|
| 277 |
+
x = blk(x)
|
| 278 |
+
if i in blocks_to_take:
|
| 279 |
+
output.append(x)
|
| 280 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 281 |
+
return output
|
| 282 |
+
|
| 283 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
| 284 |
+
x = self.prepare_tokens_with_masks(x)
|
| 285 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
| 286 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 287 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 288 |
+
for block_chunk in self.blocks:
|
| 289 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
| 290 |
+
x = blk(x)
|
| 291 |
+
if i in blocks_to_take:
|
| 292 |
+
output.append(x)
|
| 293 |
+
i += 1
|
| 294 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 295 |
+
return output
|
| 296 |
+
|
| 297 |
+
def get_intermediate_layers(
|
| 298 |
+
self,
|
| 299 |
+
x: torch.Tensor,
|
| 300 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
| 301 |
+
reshape: bool = False,
|
| 302 |
+
return_class_token: bool = False,
|
| 303 |
+
norm=True
|
| 304 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
| 305 |
+
if self.chunked_blocks:
|
| 306 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
| 307 |
+
else:
|
| 308 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
| 309 |
+
if norm:
|
| 310 |
+
outputs = [self.norm(out) for out in outputs]
|
| 311 |
+
class_tokens = [out[:, 0] for out in outputs]
|
| 312 |
+
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
|
| 313 |
+
if reshape:
|
| 314 |
+
B, _, w, h = x.shape
|
| 315 |
+
outputs = [
|
| 316 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
| 317 |
+
for out in outputs
|
| 318 |
+
]
|
| 319 |
+
if return_class_token:
|
| 320 |
+
return tuple(zip(outputs, class_tokens))
|
| 321 |
+
return tuple(outputs)
|
| 322 |
+
|
| 323 |
+
def forward(self, *args, is_training=False, **kwargs):
|
| 324 |
+
ret = self.forward_features(*args, **kwargs)
|
| 325 |
+
if is_training:
|
| 326 |
+
return ret
|
| 327 |
+
else:
|
| 328 |
+
return self.head(ret["x_norm_clstoken"])
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
| 332 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
| 333 |
+
if isinstance(module, nn.Linear):
|
| 334 |
+
trunc_normal_(module.weight, std=0.02)
|
| 335 |
+
if module.bias is not None:
|
| 336 |
+
nn.init.zeros_(module.bias)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
| 340 |
+
model = DinoVisionTransformer(
|
| 341 |
+
patch_size=patch_size,
|
| 342 |
+
embed_dim=384,
|
| 343 |
+
depth=12,
|
| 344 |
+
num_heads=6,
|
| 345 |
+
mlp_ratio=4,
|
| 346 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 347 |
+
num_register_tokens=num_register_tokens,
|
| 348 |
+
**kwargs,
|
| 349 |
+
)
|
| 350 |
+
return model
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
| 354 |
+
model = DinoVisionTransformer(
|
| 355 |
+
patch_size=patch_size,
|
| 356 |
+
embed_dim=768,
|
| 357 |
+
depth=12,
|
| 358 |
+
num_heads=12,
|
| 359 |
+
mlp_ratio=4,
|
| 360 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 361 |
+
num_register_tokens=num_register_tokens,
|
| 362 |
+
**kwargs,
|
| 363 |
+
)
|
| 364 |
+
return model
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
| 368 |
+
model = DinoVisionTransformer(
|
| 369 |
+
patch_size=patch_size,
|
| 370 |
+
embed_dim=1024,
|
| 371 |
+
depth=24,
|
| 372 |
+
num_heads=16,
|
| 373 |
+
mlp_ratio=4,
|
| 374 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 375 |
+
num_register_tokens=num_register_tokens,
|
| 376 |
+
**kwargs,
|
| 377 |
+
)
|
| 378 |
+
return model
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
| 382 |
+
"""
|
| 383 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
| 384 |
+
"""
|
| 385 |
+
model = DinoVisionTransformer(
|
| 386 |
+
patch_size=patch_size,
|
| 387 |
+
embed_dim=1536,
|
| 388 |
+
depth=40,
|
| 389 |
+
num_heads=24,
|
| 390 |
+
mlp_ratio=4,
|
| 391 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 392 |
+
num_register_tokens=num_register_tokens,
|
| 393 |
+
**kwargs,
|
| 394 |
+
)
|
| 395 |
+
return model
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def DINOv2(model_name):
|
| 399 |
+
model_zoo = {
|
| 400 |
+
"vits": vit_small,
|
| 401 |
+
"vitb": vit_base,
|
| 402 |
+
"vitl": vit_large,
|
| 403 |
+
"vitg": vit_giant2
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
return model_zoo[model_name](
|
| 407 |
+
img_size=518,
|
| 408 |
+
patch_size=14,
|
| 409 |
+
init_values=1.0,
|
| 410 |
+
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
|
| 411 |
+
block_chunks=0,
|
| 412 |
+
num_register_tokens=0,
|
| 413 |
+
interpolate_antialias=False,
|
| 414 |
+
interpolate_offset=0.1
|
| 415 |
+
)
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from .mlp import Mlp
|
| 8 |
+
from .patch_embed import PatchEmbed
|
| 9 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
| 10 |
+
from .block import NestedTensorBlock
|
| 11 |
+
from .attention import MemEffAttention
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (438 Bytes). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/attention.cpython-310.pyc
ADDED
|
Binary file (2.41 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/block.cpython-310.pyc
ADDED
|
Binary file (8.01 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/drop_path.cpython-310.pyc
ADDED
|
Binary file (1.24 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/layer_scale.cpython-310.pyc
ADDED
|
Binary file (1.04 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/mlp.cpython-310.pyc
ADDED
|
Binary file (1.23 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/patch_embed.cpython-310.pyc
ADDED
|
Binary file (2.68 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/__pycache__/swiglu_ffn.cpython-310.pyc
ADDED
|
Binary file (2.03 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/attention.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 10 |
+
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from torch import Tensor
|
| 14 |
+
from torch import nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger("dinov2")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
| 22 |
+
|
| 23 |
+
XFORMERS_AVAILABLE = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
logger.warning("xFormers not available")
|
| 26 |
+
XFORMERS_AVAILABLE = False
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Attention(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
dim: int,
|
| 33 |
+
num_heads: int = 8,
|
| 34 |
+
qkv_bias: bool = False,
|
| 35 |
+
proj_bias: bool = True,
|
| 36 |
+
attn_drop: float = 0.0,
|
| 37 |
+
proj_drop: float = 0.0,
|
| 38 |
+
) -> None:
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.num_heads = num_heads
|
| 41 |
+
head_dim = dim // num_heads
|
| 42 |
+
self.scale = head_dim**-0.5
|
| 43 |
+
|
| 44 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 45 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 46 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
| 47 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 48 |
+
|
| 49 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 50 |
+
B, N, C = x.shape
|
| 51 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 52 |
+
|
| 53 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
| 54 |
+
attn = q @ k.transpose(-2, -1)
|
| 55 |
+
|
| 56 |
+
attn = attn.softmax(dim=-1)
|
| 57 |
+
attn = self.attn_drop(attn)
|
| 58 |
+
|
| 59 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 60 |
+
x = self.proj(x)
|
| 61 |
+
x = self.proj_drop(x)
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class MemEffAttention(Attention):
|
| 66 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
| 67 |
+
if not XFORMERS_AVAILABLE:
|
| 68 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
| 69 |
+
return super().forward(x)
|
| 70 |
+
|
| 71 |
+
B, N, C = x.shape
|
| 72 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 73 |
+
|
| 74 |
+
q, k, v = unbind(qkv, 2)
|
| 75 |
+
|
| 76 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
| 77 |
+
x = x.reshape([B, N, C])
|
| 78 |
+
|
| 79 |
+
x = self.proj(x)
|
| 80 |
+
x = self.proj_drop(x)
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/block.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 10 |
+
|
| 11 |
+
import logging
|
| 12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from torch import nn, Tensor
|
| 16 |
+
|
| 17 |
+
from .attention import Attention, MemEffAttention
|
| 18 |
+
from .drop_path import DropPath
|
| 19 |
+
from .layer_scale import LayerScale
|
| 20 |
+
from .mlp import Mlp
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger("dinov2")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
from xformers.ops import fmha
|
| 28 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
| 29 |
+
|
| 30 |
+
XFORMERS_AVAILABLE = True
|
| 31 |
+
except ImportError:
|
| 32 |
+
logger.warning("xFormers not available")
|
| 33 |
+
XFORMERS_AVAILABLE = False
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class Block(nn.Module):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
dim: int,
|
| 40 |
+
num_heads: int,
|
| 41 |
+
mlp_ratio: float = 4.0,
|
| 42 |
+
qkv_bias: bool = False,
|
| 43 |
+
proj_bias: bool = True,
|
| 44 |
+
ffn_bias: bool = True,
|
| 45 |
+
drop: float = 0.0,
|
| 46 |
+
attn_drop: float = 0.0,
|
| 47 |
+
init_values=None,
|
| 48 |
+
drop_path: float = 0.0,
|
| 49 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 50 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
| 51 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
| 52 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
| 53 |
+
) -> None:
|
| 54 |
+
super().__init__()
|
| 55 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
| 56 |
+
self.norm1 = norm_layer(dim)
|
| 57 |
+
self.attn = attn_class(
|
| 58 |
+
dim,
|
| 59 |
+
num_heads=num_heads,
|
| 60 |
+
qkv_bias=qkv_bias,
|
| 61 |
+
proj_bias=proj_bias,
|
| 62 |
+
attn_drop=attn_drop,
|
| 63 |
+
proj_drop=drop,
|
| 64 |
+
)
|
| 65 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 66 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 67 |
+
|
| 68 |
+
self.norm2 = norm_layer(dim)
|
| 69 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 70 |
+
self.mlp = ffn_layer(
|
| 71 |
+
in_features=dim,
|
| 72 |
+
hidden_features=mlp_hidden_dim,
|
| 73 |
+
act_layer=act_layer,
|
| 74 |
+
drop=drop,
|
| 75 |
+
bias=ffn_bias,
|
| 76 |
+
)
|
| 77 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 78 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 79 |
+
|
| 80 |
+
self.sample_drop_ratio = drop_path
|
| 81 |
+
|
| 82 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 83 |
+
def attn_residual_func(x: Tensor) -> Tensor:
|
| 84 |
+
return self.ls1(self.attn(self.norm1(x)))
|
| 85 |
+
|
| 86 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
| 87 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 88 |
+
|
| 89 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
| 90 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
| 91 |
+
x = drop_add_residual_stochastic_depth(
|
| 92 |
+
x,
|
| 93 |
+
residual_func=attn_residual_func,
|
| 94 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 95 |
+
)
|
| 96 |
+
x = drop_add_residual_stochastic_depth(
|
| 97 |
+
x,
|
| 98 |
+
residual_func=ffn_residual_func,
|
| 99 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 100 |
+
)
|
| 101 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
| 102 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
| 103 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
| 104 |
+
else:
|
| 105 |
+
x = x + attn_residual_func(x)
|
| 106 |
+
x = x + ffn_residual_func(x)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def drop_add_residual_stochastic_depth(
|
| 111 |
+
x: Tensor,
|
| 112 |
+
residual_func: Callable[[Tensor], Tensor],
|
| 113 |
+
sample_drop_ratio: float = 0.0,
|
| 114 |
+
) -> Tensor:
|
| 115 |
+
# 1) extract subset using permutation
|
| 116 |
+
b, n, d = x.shape
|
| 117 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 118 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 119 |
+
x_subset = x[brange]
|
| 120 |
+
|
| 121 |
+
# 2) apply residual_func to get residual
|
| 122 |
+
residual = residual_func(x_subset)
|
| 123 |
+
|
| 124 |
+
x_flat = x.flatten(1)
|
| 125 |
+
residual = residual.flatten(1)
|
| 126 |
+
|
| 127 |
+
residual_scale_factor = b / sample_subset_size
|
| 128 |
+
|
| 129 |
+
# 3) add the residual
|
| 130 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 131 |
+
return x_plus_residual.view_as(x)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
| 135 |
+
b, n, d = x.shape
|
| 136 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 137 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 138 |
+
residual_scale_factor = b / sample_subset_size
|
| 139 |
+
return brange, residual_scale_factor
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
| 143 |
+
if scaling_vector is None:
|
| 144 |
+
x_flat = x.flatten(1)
|
| 145 |
+
residual = residual.flatten(1)
|
| 146 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 147 |
+
else:
|
| 148 |
+
x_plus_residual = scaled_index_add(
|
| 149 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
| 150 |
+
)
|
| 151 |
+
return x_plus_residual
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
| 158 |
+
"""
|
| 159 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
| 160 |
+
"""
|
| 161 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
| 162 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
| 163 |
+
if all_shapes not in attn_bias_cache.keys():
|
| 164 |
+
seqlens = []
|
| 165 |
+
for b, x in zip(batch_sizes, x_list):
|
| 166 |
+
for _ in range(b):
|
| 167 |
+
seqlens.append(x.shape[1])
|
| 168 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
| 169 |
+
attn_bias._batch_sizes = batch_sizes
|
| 170 |
+
attn_bias_cache[all_shapes] = attn_bias
|
| 171 |
+
|
| 172 |
+
if branges is not None:
|
| 173 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
| 174 |
+
else:
|
| 175 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
| 176 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
| 177 |
+
|
| 178 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def drop_add_residual_stochastic_depth_list(
|
| 182 |
+
x_list: List[Tensor],
|
| 183 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
| 184 |
+
sample_drop_ratio: float = 0.0,
|
| 185 |
+
scaling_vector=None,
|
| 186 |
+
) -> Tensor:
|
| 187 |
+
# 1) generate random set of indices for dropping samples in the batch
|
| 188 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
| 189 |
+
branges = [s[0] for s in branges_scales]
|
| 190 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
| 191 |
+
|
| 192 |
+
# 2) get attention bias and index+concat the tensors
|
| 193 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
| 194 |
+
|
| 195 |
+
# 3) apply residual_func to get residual, and split the result
|
| 196 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
| 197 |
+
|
| 198 |
+
outputs = []
|
| 199 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
| 200 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
| 201 |
+
return outputs
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class NestedTensorBlock(Block):
|
| 205 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
| 206 |
+
"""
|
| 207 |
+
x_list contains a list of tensors to nest together and run
|
| 208 |
+
"""
|
| 209 |
+
assert isinstance(self.attn, MemEffAttention)
|
| 210 |
+
|
| 211 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
| 212 |
+
|
| 213 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 214 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
| 215 |
+
|
| 216 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 217 |
+
return self.mlp(self.norm2(x))
|
| 218 |
+
|
| 219 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 220 |
+
x_list,
|
| 221 |
+
residual_func=attn_residual_func,
|
| 222 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 223 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 224 |
+
)
|
| 225 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 226 |
+
x_list,
|
| 227 |
+
residual_func=ffn_residual_func,
|
| 228 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 229 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 230 |
+
)
|
| 231 |
+
return x_list
|
| 232 |
+
else:
|
| 233 |
+
|
| 234 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 235 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
| 236 |
+
|
| 237 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 238 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 239 |
+
|
| 240 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
| 241 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
| 242 |
+
x = x + ffn_residual_func(x)
|
| 243 |
+
return attn_bias.split(x)
|
| 244 |
+
|
| 245 |
+
def forward(self, x_or_x_list):
|
| 246 |
+
if isinstance(x_or_x_list, Tensor):
|
| 247 |
+
return super().forward(x_or_x_list)
|
| 248 |
+
elif isinstance(x_or_x_list, list):
|
| 249 |
+
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
| 250 |
+
return self.forward_nested(x_or_x_list)
|
| 251 |
+
else:
|
| 252 |
+
raise AssertionError
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/drop_path.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 16 |
+
if drop_prob == 0.0 or not training:
|
| 17 |
+
return x
|
| 18 |
+
keep_prob = 1 - drop_prob
|
| 19 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 20 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 21 |
+
if keep_prob > 0.0:
|
| 22 |
+
random_tensor.div_(keep_prob)
|
| 23 |
+
output = x * random_tensor
|
| 24 |
+
return output
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class DropPath(nn.Module):
|
| 28 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 29 |
+
|
| 30 |
+
def __init__(self, drop_prob=None):
|
| 31 |
+
super(DropPath, self).__init__()
|
| 32 |
+
self.drop_prob = drop_prob
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return drop_path(x, self.drop_prob, self.training)
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/layer_scale.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
| 8 |
+
|
| 9 |
+
from typing import Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class LayerScale(nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
dim: int,
|
| 20 |
+
init_values: Union[float, Tensor] = 1e-5,
|
| 21 |
+
inplace: bool = False,
|
| 22 |
+
) -> None:
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.inplace = inplace
|
| 25 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 26 |
+
|
| 27 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 28 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/mlp.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from typing import Callable, Optional
|
| 13 |
+
|
| 14 |
+
from torch import Tensor, nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Mlp(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
in_features: int,
|
| 21 |
+
hidden_features: Optional[int] = None,
|
| 22 |
+
out_features: Optional[int] = None,
|
| 23 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 24 |
+
drop: float = 0.0,
|
| 25 |
+
bias: bool = True,
|
| 26 |
+
) -> None:
|
| 27 |
+
super().__init__()
|
| 28 |
+
out_features = out_features or in_features
|
| 29 |
+
hidden_features = hidden_features or in_features
|
| 30 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 31 |
+
self.act = act_layer()
|
| 32 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 33 |
+
self.drop = nn.Dropout(drop)
|
| 34 |
+
|
| 35 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 36 |
+
x = self.fc1(x)
|
| 37 |
+
x = self.act(x)
|
| 38 |
+
x = self.drop(x)
|
| 39 |
+
x = self.fc2(x)
|
| 40 |
+
x = self.drop(x)
|
| 41 |
+
return x
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/patch_embed.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
# References:
|
| 8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 10 |
+
|
| 11 |
+
from typing import Callable, Optional, Tuple, Union
|
| 12 |
+
|
| 13 |
+
from torch import Tensor
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def make_2tuple(x):
|
| 18 |
+
if isinstance(x, tuple):
|
| 19 |
+
assert len(x) == 2
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
assert isinstance(x, int)
|
| 23 |
+
return (x, x)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class PatchEmbed(nn.Module):
|
| 27 |
+
"""
|
| 28 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
img_size: Image size.
|
| 32 |
+
patch_size: Patch token size.
|
| 33 |
+
in_chans: Number of input image channels.
|
| 34 |
+
embed_dim: Number of linear projection output channels.
|
| 35 |
+
norm_layer: Normalization layer.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
| 41 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 42 |
+
in_chans: int = 3,
|
| 43 |
+
embed_dim: int = 768,
|
| 44 |
+
norm_layer: Optional[Callable] = None,
|
| 45 |
+
flatten_embedding: bool = True,
|
| 46 |
+
) -> None:
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
image_HW = make_2tuple(img_size)
|
| 50 |
+
patch_HW = make_2tuple(patch_size)
|
| 51 |
+
patch_grid_size = (
|
| 52 |
+
image_HW[0] // patch_HW[0],
|
| 53 |
+
image_HW[1] // patch_HW[1],
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.img_size = image_HW
|
| 57 |
+
self.patch_size = patch_HW
|
| 58 |
+
self.patches_resolution = patch_grid_size
|
| 59 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
| 60 |
+
|
| 61 |
+
self.in_chans = in_chans
|
| 62 |
+
self.embed_dim = embed_dim
|
| 63 |
+
|
| 64 |
+
self.flatten_embedding = flatten_embedding
|
| 65 |
+
|
| 66 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
| 67 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 68 |
+
|
| 69 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 70 |
+
_, _, H, W = x.shape
|
| 71 |
+
patch_H, patch_W = self.patch_size
|
| 72 |
+
|
| 73 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
| 74 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
| 75 |
+
|
| 76 |
+
x = self.proj(x) # B C H W
|
| 77 |
+
H, W = x.size(2), x.size(3)
|
| 78 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
| 79 |
+
x = self.norm(x)
|
| 80 |
+
if not self.flatten_embedding:
|
| 81 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
| 82 |
+
return x
|
| 83 |
+
|
| 84 |
+
def flops(self) -> float:
|
| 85 |
+
Ho, Wo = self.patches_resolution
|
| 86 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
| 87 |
+
if self.norm is not None:
|
| 88 |
+
flops += Ho * Wo * self.embed_dim
|
| 89 |
+
return flops
|
Depth-Anything-V2/depth_anything_v2/dinov2_layers/swiglu_ffn.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
from typing import Callable, Optional
|
| 8 |
+
|
| 9 |
+
from torch import Tensor, nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SwiGLUFFN(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
in_features: int,
|
| 17 |
+
hidden_features: Optional[int] = None,
|
| 18 |
+
out_features: Optional[int] = None,
|
| 19 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 20 |
+
drop: float = 0.0,
|
| 21 |
+
bias: bool = True,
|
| 22 |
+
) -> None:
|
| 23 |
+
super().__init__()
|
| 24 |
+
out_features = out_features or in_features
|
| 25 |
+
hidden_features = hidden_features or in_features
|
| 26 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
| 27 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 28 |
+
|
| 29 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 30 |
+
x12 = self.w12(x)
|
| 31 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
| 32 |
+
hidden = F.silu(x1) * x2
|
| 33 |
+
return self.w3(hidden)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from xformers.ops import SwiGLU
|
| 38 |
+
|
| 39 |
+
XFORMERS_AVAILABLE = True
|
| 40 |
+
except ImportError:
|
| 41 |
+
SwiGLU = SwiGLUFFN
|
| 42 |
+
XFORMERS_AVAILABLE = False
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class SwiGLUFFNFused(SwiGLU):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
in_features: int,
|
| 49 |
+
hidden_features: Optional[int] = None,
|
| 50 |
+
out_features: Optional[int] = None,
|
| 51 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 52 |
+
drop: float = 0.0,
|
| 53 |
+
bias: bool = True,
|
| 54 |
+
) -> None:
|
| 55 |
+
out_features = out_features or in_features
|
| 56 |
+
hidden_features = hidden_features or in_features
|
| 57 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
| 58 |
+
super().__init__(
|
| 59 |
+
in_features=in_features,
|
| 60 |
+
hidden_features=hidden_features,
|
| 61 |
+
out_features=out_features,
|
| 62 |
+
bias=bias,
|
| 63 |
+
)
|
Depth-Anything-V2/depth_anything_v2/dpt.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torchvision.transforms import Compose
|
| 6 |
+
|
| 7 |
+
from .dinov2 import DINOv2
|
| 8 |
+
from .util.blocks import FeatureFusionBlock, _make_scratch
|
| 9 |
+
from .util.transform import Resize, NormalizeImage, PrepareForNet
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _make_fusion_block(features, use_bn, size=None):
|
| 13 |
+
return FeatureFusionBlock(
|
| 14 |
+
features,
|
| 15 |
+
nn.ReLU(False),
|
| 16 |
+
deconv=False,
|
| 17 |
+
bn=use_bn,
|
| 18 |
+
expand=False,
|
| 19 |
+
align_corners=True,
|
| 20 |
+
size=size,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ConvBlock(nn.Module):
|
| 25 |
+
def __init__(self, in_feature, out_feature):
|
| 26 |
+
super().__init__()
|
| 27 |
+
|
| 28 |
+
self.conv_block = nn.Sequential(
|
| 29 |
+
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
|
| 30 |
+
nn.BatchNorm2d(out_feature),
|
| 31 |
+
nn.ReLU(True)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return self.conv_block(x)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class DPTHead(nn.Module):
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
in_channels,
|
| 42 |
+
features=256,
|
| 43 |
+
use_bn=False,
|
| 44 |
+
out_channels=[256, 512, 1024, 1024],
|
| 45 |
+
use_clstoken=False
|
| 46 |
+
):
|
| 47 |
+
super(DPTHead, self).__init__()
|
| 48 |
+
|
| 49 |
+
self.use_clstoken = use_clstoken
|
| 50 |
+
|
| 51 |
+
self.projects = nn.ModuleList([
|
| 52 |
+
nn.Conv2d(
|
| 53 |
+
in_channels=in_channels,
|
| 54 |
+
out_channels=out_channel,
|
| 55 |
+
kernel_size=1,
|
| 56 |
+
stride=1,
|
| 57 |
+
padding=0,
|
| 58 |
+
) for out_channel in out_channels
|
| 59 |
+
])
|
| 60 |
+
|
| 61 |
+
self.resize_layers = nn.ModuleList([
|
| 62 |
+
nn.ConvTranspose2d(
|
| 63 |
+
in_channels=out_channels[0],
|
| 64 |
+
out_channels=out_channels[0],
|
| 65 |
+
kernel_size=4,
|
| 66 |
+
stride=4,
|
| 67 |
+
padding=0),
|
| 68 |
+
nn.ConvTranspose2d(
|
| 69 |
+
in_channels=out_channels[1],
|
| 70 |
+
out_channels=out_channels[1],
|
| 71 |
+
kernel_size=2,
|
| 72 |
+
stride=2,
|
| 73 |
+
padding=0),
|
| 74 |
+
nn.Identity(),
|
| 75 |
+
nn.Conv2d(
|
| 76 |
+
in_channels=out_channels[3],
|
| 77 |
+
out_channels=out_channels[3],
|
| 78 |
+
kernel_size=3,
|
| 79 |
+
stride=2,
|
| 80 |
+
padding=1)
|
| 81 |
+
])
|
| 82 |
+
|
| 83 |
+
if use_clstoken:
|
| 84 |
+
self.readout_projects = nn.ModuleList()
|
| 85 |
+
for _ in range(len(self.projects)):
|
| 86 |
+
self.readout_projects.append(
|
| 87 |
+
nn.Sequential(
|
| 88 |
+
nn.Linear(2 * in_channels, in_channels),
|
| 89 |
+
nn.GELU()))
|
| 90 |
+
|
| 91 |
+
self.scratch = _make_scratch(
|
| 92 |
+
out_channels,
|
| 93 |
+
features,
|
| 94 |
+
groups=1,
|
| 95 |
+
expand=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
self.scratch.stem_transpose = None
|
| 99 |
+
|
| 100 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
| 101 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
| 102 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
| 103 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
| 104 |
+
|
| 105 |
+
head_features_1 = features
|
| 106 |
+
head_features_2 = 32
|
| 107 |
+
|
| 108 |
+
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
| 109 |
+
self.scratch.output_conv2 = nn.Sequential(
|
| 110 |
+
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
| 111 |
+
nn.ReLU(True),
|
| 112 |
+
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
| 113 |
+
nn.ReLU(True),
|
| 114 |
+
nn.Identity(),
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
def forward(self, out_features, patch_h, patch_w):
|
| 118 |
+
out = []
|
| 119 |
+
for i, x in enumerate(out_features):
|
| 120 |
+
if self.use_clstoken:
|
| 121 |
+
x, cls_token = x[0], x[1]
|
| 122 |
+
readout = cls_token.unsqueeze(1).expand_as(x)
|
| 123 |
+
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
| 124 |
+
else:
|
| 125 |
+
x = x[0]
|
| 126 |
+
|
| 127 |
+
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
| 128 |
+
|
| 129 |
+
x = self.projects[i](x)
|
| 130 |
+
x = self.resize_layers[i](x)
|
| 131 |
+
|
| 132 |
+
# project&resize 0: torch.Size([1, 256, 148, 216])
|
| 133 |
+
# project&resize 1: torch.Size([1, 512, 74, 108])
|
| 134 |
+
# project&resize 2: torch.Size([1, 1024, 37, 54])
|
| 135 |
+
# project&resize 3: torch.Size([1, 1024, 19, 27])
|
| 136 |
+
|
| 137 |
+
out.append(x)
|
| 138 |
+
|
| 139 |
+
layer_1, layer_2, layer_3, layer_4 = out
|
| 140 |
+
|
| 141 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 142 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 143 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 144 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 145 |
+
|
| 146 |
+
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
| 147 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
| 148 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
| 149 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 150 |
+
|
| 151 |
+
out_fea = self.scratch.output_conv1(path_1)
|
| 152 |
+
# scratch.output_conv1: torch.Size([1, 128, 296, 432])
|
| 153 |
+
out = F.interpolate(out_fea, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
| 154 |
+
# interpolate: torch.Size([1, 128, 518, 756])
|
| 155 |
+
out = self.scratch.output_conv2(out)
|
| 156 |
+
# scratch.output_conv2: torch.Size([1, 1, 518, 756])
|
| 157 |
+
|
| 158 |
+
return out, out_fea
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class DepthAnythingV2(nn.Module):
|
| 162 |
+
def __init__(
|
| 163 |
+
self,
|
| 164 |
+
encoder='vitl',
|
| 165 |
+
features=256,
|
| 166 |
+
out_channels=[256, 512, 1024, 1024],
|
| 167 |
+
use_bn=False,
|
| 168 |
+
use_clstoken=False
|
| 169 |
+
):
|
| 170 |
+
super(DepthAnythingV2, self).__init__()
|
| 171 |
+
|
| 172 |
+
self.intermediate_layer_idx = {
|
| 173 |
+
'vits': [2, 5, 8, 11],
|
| 174 |
+
'vitb': [2, 5, 8, 11],
|
| 175 |
+
'vitl': [4, 11, 17, 23],
|
| 176 |
+
'vitg': [9, 19, 29, 39]
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
self.encoder = encoder
|
| 180 |
+
self.pretrained = DINOv2(model_name=encoder)
|
| 181 |
+
|
| 182 |
+
self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
|
| 186 |
+
|
| 187 |
+
# features 0: torch.Size([1, 1998, 1024]) torch.Size([1, 1024])
|
| 188 |
+
# features 1: torch.Size([1, 1998, 1024]) torch.Size([1, 1024])
|
| 189 |
+
# features 2: torch.Size([1, 1998, 1024]) torch.Size([1, 1024])
|
| 190 |
+
# features 3: torch.Size([1, 1998, 1024]) torch.Size([1, 1024])
|
| 191 |
+
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
|
| 192 |
+
|
| 193 |
+
depth, out_fea = self.depth_head(features, patch_h, patch_w)
|
| 194 |
+
depth = F.relu(depth)
|
| 195 |
+
|
| 196 |
+
return depth, out_fea
|
| 197 |
+
|
| 198 |
+
@torch.no_grad()
|
| 199 |
+
def infer_image(self, raw_image, input_size=518):
|
| 200 |
+
image, (h, w) = self.image2tensor(raw_image, input_size)
|
| 201 |
+
|
| 202 |
+
depth = self.forward(image)
|
| 203 |
+
|
| 204 |
+
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
|
| 205 |
+
|
| 206 |
+
return depth.cpu().numpy()
|
| 207 |
+
|
| 208 |
+
def image2tensor(self, raw_image, input_size=518):
|
| 209 |
+
transform = Compose([
|
| 210 |
+
Resize(
|
| 211 |
+
width=input_size,
|
| 212 |
+
height=input_size,
|
| 213 |
+
resize_target=False,
|
| 214 |
+
keep_aspect_ratio=True,
|
| 215 |
+
ensure_multiple_of=14,
|
| 216 |
+
resize_method='lower_bound',
|
| 217 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 218 |
+
),
|
| 219 |
+
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 220 |
+
PrepareForNet(),
|
| 221 |
+
])
|
| 222 |
+
|
| 223 |
+
h, w = raw_image.shape[:2]
|
| 224 |
+
|
| 225 |
+
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
|
| 226 |
+
|
| 227 |
+
image = transform({'image': image})['image']
|
| 228 |
+
image = torch.from_numpy(image).unsqueeze(0)
|
| 229 |
+
|
| 230 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 231 |
+
image = image.to(DEVICE)
|
| 232 |
+
|
| 233 |
+
return image, (h, w)
|
Depth-Anything-V2/depth_anything_v2/util/__pycache__/blocks.cpython-310.pyc
ADDED
|
Binary file (3.3 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/util/__pycache__/transform.cpython-310.pyc
ADDED
|
Binary file (4.74 kB). View file
|
|
|
Depth-Anything-V2/depth_anything_v2/util/blocks.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
| 5 |
+
scratch = nn.Module()
|
| 6 |
+
|
| 7 |
+
out_shape1 = out_shape
|
| 8 |
+
out_shape2 = out_shape
|
| 9 |
+
out_shape3 = out_shape
|
| 10 |
+
if len(in_shape) >= 4:
|
| 11 |
+
out_shape4 = out_shape
|
| 12 |
+
|
| 13 |
+
if expand:
|
| 14 |
+
out_shape1 = out_shape
|
| 15 |
+
out_shape2 = out_shape * 2
|
| 16 |
+
out_shape3 = out_shape * 4
|
| 17 |
+
if len(in_shape) >= 4:
|
| 18 |
+
out_shape4 = out_shape * 8
|
| 19 |
+
|
| 20 |
+
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 21 |
+
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 22 |
+
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 23 |
+
if len(in_shape) >= 4:
|
| 24 |
+
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
| 25 |
+
|
| 26 |
+
return scratch
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ResidualConvUnit(nn.Module):
|
| 30 |
+
"""Residual convolution module.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self, features, activation, bn):
|
| 34 |
+
"""Init.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
features (int): number of features
|
| 38 |
+
"""
|
| 39 |
+
super().__init__()
|
| 40 |
+
|
| 41 |
+
self.bn = bn
|
| 42 |
+
|
| 43 |
+
self.groups=1
|
| 44 |
+
|
| 45 |
+
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
| 46 |
+
|
| 47 |
+
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
| 48 |
+
|
| 49 |
+
if self.bn == True:
|
| 50 |
+
self.bn1 = nn.BatchNorm2d(features)
|
| 51 |
+
self.bn2 = nn.BatchNorm2d(features)
|
| 52 |
+
|
| 53 |
+
self.activation = activation
|
| 54 |
+
|
| 55 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
"""Forward pass.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
x (tensor): input
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
tensor: output
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
out = self.activation(x)
|
| 68 |
+
out = self.conv1(out)
|
| 69 |
+
if self.bn == True:
|
| 70 |
+
out = self.bn1(out)
|
| 71 |
+
|
| 72 |
+
out = self.activation(out)
|
| 73 |
+
out = self.conv2(out)
|
| 74 |
+
if self.bn == True:
|
| 75 |
+
out = self.bn2(out)
|
| 76 |
+
|
| 77 |
+
if self.groups > 1:
|
| 78 |
+
out = self.conv_merge(out)
|
| 79 |
+
|
| 80 |
+
return self.skip_add.add(out, x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class FeatureFusionBlock(nn.Module):
|
| 84 |
+
"""Feature fusion block.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
features,
|
| 90 |
+
activation,
|
| 91 |
+
deconv=False,
|
| 92 |
+
bn=False,
|
| 93 |
+
expand=False,
|
| 94 |
+
align_corners=True,
|
| 95 |
+
size=None
|
| 96 |
+
):
|
| 97 |
+
"""Init.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
features (int): number of features
|
| 101 |
+
"""
|
| 102 |
+
super(FeatureFusionBlock, self).__init__()
|
| 103 |
+
|
| 104 |
+
self.deconv = deconv
|
| 105 |
+
self.align_corners = align_corners
|
| 106 |
+
|
| 107 |
+
self.groups=1
|
| 108 |
+
|
| 109 |
+
self.expand = expand
|
| 110 |
+
out_features = features
|
| 111 |
+
if self.expand == True:
|
| 112 |
+
out_features = features // 2
|
| 113 |
+
|
| 114 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
| 115 |
+
|
| 116 |
+
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
| 117 |
+
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
| 118 |
+
|
| 119 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 120 |
+
|
| 121 |
+
self.size=size
|
| 122 |
+
|
| 123 |
+
def forward(self, *xs, size=None):
|
| 124 |
+
"""Forward pass.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
tensor: output
|
| 128 |
+
"""
|
| 129 |
+
output = xs[0]
|
| 130 |
+
|
| 131 |
+
if len(xs) == 2:
|
| 132 |
+
res = self.resConfUnit1(xs[1])
|
| 133 |
+
output = self.skip_add.add(output, res)
|
| 134 |
+
|
| 135 |
+
output = self.resConfUnit2(output)
|
| 136 |
+
|
| 137 |
+
if (size is None) and (self.size is None):
|
| 138 |
+
modifier = {"scale_factor": 2}
|
| 139 |
+
elif size is None:
|
| 140 |
+
modifier = {"size": self.size}
|
| 141 |
+
else:
|
| 142 |
+
modifier = {"size": size}
|
| 143 |
+
|
| 144 |
+
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
| 145 |
+
|
| 146 |
+
output = self.out_conv(output)
|
| 147 |
+
|
| 148 |
+
return output
|
Depth-Anything-V2/depth_anything_v2/util/transform.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Resize(object):
|
| 6 |
+
"""Resize sample to given size (width, height).
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
width,
|
| 12 |
+
height,
|
| 13 |
+
resize_target=True,
|
| 14 |
+
keep_aspect_ratio=False,
|
| 15 |
+
ensure_multiple_of=1,
|
| 16 |
+
resize_method="lower_bound",
|
| 17 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 18 |
+
):
|
| 19 |
+
"""Init.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
width (int): desired output width
|
| 23 |
+
height (int): desired output height
|
| 24 |
+
resize_target (bool, optional):
|
| 25 |
+
True: Resize the full sample (image, mask, target).
|
| 26 |
+
False: Resize image only.
|
| 27 |
+
Defaults to True.
|
| 28 |
+
keep_aspect_ratio (bool, optional):
|
| 29 |
+
True: Keep the aspect ratio of the input sample.
|
| 30 |
+
Output sample might not have the given width and height, and
|
| 31 |
+
resize behaviour depends on the parameter 'resize_method'.
|
| 32 |
+
Defaults to False.
|
| 33 |
+
ensure_multiple_of (int, optional):
|
| 34 |
+
Output width and height is constrained to be multiple of this parameter.
|
| 35 |
+
Defaults to 1.
|
| 36 |
+
resize_method (str, optional):
|
| 37 |
+
"lower_bound": Output will be at least as large as the given size.
|
| 38 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
| 39 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
| 40 |
+
Defaults to "lower_bound".
|
| 41 |
+
"""
|
| 42 |
+
self.__width = width
|
| 43 |
+
self.__height = height
|
| 44 |
+
|
| 45 |
+
self.__resize_target = resize_target
|
| 46 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
| 47 |
+
self.__multiple_of = ensure_multiple_of
|
| 48 |
+
self.__resize_method = resize_method
|
| 49 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 50 |
+
|
| 51 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
| 52 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 53 |
+
|
| 54 |
+
if max_val is not None and y > max_val:
|
| 55 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 56 |
+
|
| 57 |
+
if y < min_val:
|
| 58 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 59 |
+
|
| 60 |
+
return y
|
| 61 |
+
|
| 62 |
+
def get_size(self, width, height):
|
| 63 |
+
# determine new height and width
|
| 64 |
+
scale_height = self.__height / height
|
| 65 |
+
scale_width = self.__width / width
|
| 66 |
+
|
| 67 |
+
if self.__keep_aspect_ratio:
|
| 68 |
+
if self.__resize_method == "lower_bound":
|
| 69 |
+
# scale such that output size is lower bound
|
| 70 |
+
if scale_width > scale_height:
|
| 71 |
+
# fit width
|
| 72 |
+
scale_height = scale_width
|
| 73 |
+
else:
|
| 74 |
+
# fit height
|
| 75 |
+
scale_width = scale_height
|
| 76 |
+
elif self.__resize_method == "upper_bound":
|
| 77 |
+
# scale such that output size is upper bound
|
| 78 |
+
if scale_width < scale_height:
|
| 79 |
+
# fit width
|
| 80 |
+
scale_height = scale_width
|
| 81 |
+
else:
|
| 82 |
+
# fit height
|
| 83 |
+
scale_width = scale_height
|
| 84 |
+
elif self.__resize_method == "minimal":
|
| 85 |
+
# scale as least as possbile
|
| 86 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
| 87 |
+
# fit width
|
| 88 |
+
scale_height = scale_width
|
| 89 |
+
else:
|
| 90 |
+
# fit height
|
| 91 |
+
scale_width = scale_height
|
| 92 |
+
else:
|
| 93 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 94 |
+
|
| 95 |
+
if self.__resize_method == "lower_bound":
|
| 96 |
+
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
|
| 97 |
+
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
|
| 98 |
+
elif self.__resize_method == "upper_bound":
|
| 99 |
+
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
|
| 100 |
+
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
|
| 101 |
+
elif self.__resize_method == "minimal":
|
| 102 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
| 103 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 106 |
+
|
| 107 |
+
return (new_width, new_height)
|
| 108 |
+
|
| 109 |
+
def __call__(self, sample):
|
| 110 |
+
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
|
| 111 |
+
|
| 112 |
+
# resize sample
|
| 113 |
+
sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
|
| 114 |
+
|
| 115 |
+
if self.__resize_target:
|
| 116 |
+
if "depth" in sample:
|
| 117 |
+
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
|
| 118 |
+
|
| 119 |
+
if "mask" in sample:
|
| 120 |
+
sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
|
| 121 |
+
|
| 122 |
+
return sample
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class NormalizeImage(object):
|
| 126 |
+
"""Normlize image by given mean and std.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def __init__(self, mean, std):
|
| 130 |
+
self.__mean = mean
|
| 131 |
+
self.__std = std
|
| 132 |
+
|
| 133 |
+
def __call__(self, sample):
|
| 134 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
| 135 |
+
|
| 136 |
+
return sample
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class PrepareForNet(object):
|
| 140 |
+
"""Prepare sample for usage as network input.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
def __init__(self):
|
| 144 |
+
pass
|
| 145 |
+
|
| 146 |
+
def __call__(self, sample):
|
| 147 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
| 148 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
| 149 |
+
|
| 150 |
+
if "depth" in sample:
|
| 151 |
+
depth = sample["depth"].astype(np.float32)
|
| 152 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
| 153 |
+
|
| 154 |
+
if "mask" in sample:
|
| 155 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
| 156 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
| 157 |
+
|
| 158 |
+
return sample
|
Depth-Anything-V2/requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio_imageslider
|
| 2 |
+
gradio==4.29.0
|
| 3 |
+
matplotlib
|
| 4 |
+
opencv-python
|
| 5 |
+
torch
|
| 6 |
+
torchvision
|
Depth-Anything-V2/run.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import cv2
|
| 3 |
+
import glob
|
| 4 |
+
import matplotlib
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
if __name__ == '__main__':
|
| 13 |
+
parser = argparse.ArgumentParser(description='Depth Anything V2')
|
| 14 |
+
|
| 15 |
+
parser.add_argument('--img-path', type=str)
|
| 16 |
+
parser.add_argument('--input-size', type=int, default=518)
|
| 17 |
+
parser.add_argument('--outdir', type=str, default='./vis_depth')
|
| 18 |
+
|
| 19 |
+
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
|
| 20 |
+
|
| 21 |
+
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction')
|
| 22 |
+
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette')
|
| 23 |
+
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
|
| 26 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 27 |
+
|
| 28 |
+
model_configs = {
|
| 29 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 30 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 31 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 32 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
depth_anything = DepthAnythingV2(**model_configs[args.encoder])
|
| 36 |
+
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu'))
|
| 37 |
+
depth_anything = depth_anything.to(DEVICE).eval()
|
| 38 |
+
|
| 39 |
+
if os.path.isfile(args.img_path):
|
| 40 |
+
if args.img_path.endswith('txt'):
|
| 41 |
+
with open(args.img_path, 'r') as f:
|
| 42 |
+
filenames = f.read().splitlines()
|
| 43 |
+
else:
|
| 44 |
+
filenames = [args.img_path]
|
| 45 |
+
else:
|
| 46 |
+
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)
|
| 47 |
+
|
| 48 |
+
os.makedirs(args.outdir, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 51 |
+
|
| 52 |
+
for k, filename in enumerate(filenames):
|
| 53 |
+
print(f'Progress {k+1}/{len(filenames)}: {filename}')
|
| 54 |
+
|
| 55 |
+
raw_image = cv2.imread(filename)
|
| 56 |
+
|
| 57 |
+
depth = depth_anything.infer_image(raw_image, args.input_size)
|
| 58 |
+
|
| 59 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 60 |
+
depth = depth.astype(np.uint8)
|
| 61 |
+
|
| 62 |
+
if args.grayscale:
|
| 63 |
+
depth = np.repeat(depth[..., np.newaxis], 3, axis=-1)
|
| 64 |
+
else:
|
| 65 |
+
depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
|
| 66 |
+
|
| 67 |
+
if args.pred_only:
|
| 68 |
+
cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), depth)
|
| 69 |
+
else:
|
| 70 |
+
split_region = np.ones((raw_image.shape[0], 50, 3), dtype=np.uint8) * 255
|
| 71 |
+
combined_result = cv2.hconcat([raw_image, split_region, depth])
|
| 72 |
+
|
| 73 |
+
cv2.imwrite(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png'), combined_result)
|
Depth-Anything-V2/run_video.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import cv2
|
| 3 |
+
import glob
|
| 4 |
+
import matplotlib
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
if __name__ == '__main__':
|
| 13 |
+
parser = argparse.ArgumentParser(description='Depth Anything V2')
|
| 14 |
+
|
| 15 |
+
parser.add_argument('--video-path', type=str)
|
| 16 |
+
parser.add_argument('--input-size', type=int, default=518)
|
| 17 |
+
parser.add_argument('--outdir', type=str, default='./vis_video_depth')
|
| 18 |
+
|
| 19 |
+
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
|
| 20 |
+
|
| 21 |
+
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction')
|
| 22 |
+
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette')
|
| 23 |
+
|
| 24 |
+
args = parser.parse_args()
|
| 25 |
+
|
| 26 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 27 |
+
|
| 28 |
+
model_configs = {
|
| 29 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 30 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 31 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 32 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
depth_anything = DepthAnythingV2(**model_configs[args.encoder])
|
| 36 |
+
depth_anything.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{args.encoder}.pth', map_location='cpu'))
|
| 37 |
+
depth_anything = depth_anything.to(DEVICE).eval()
|
| 38 |
+
|
| 39 |
+
if os.path.isfile(args.video_path):
|
| 40 |
+
if args.video_path.endswith('txt'):
|
| 41 |
+
with open(args.video_path, 'r') as f:
|
| 42 |
+
lines = f.read().splitlines()
|
| 43 |
+
else:
|
| 44 |
+
filenames = [args.video_path]
|
| 45 |
+
else:
|
| 46 |
+
filenames = glob.glob(os.path.join(args.video_path, '**/*'), recursive=True)
|
| 47 |
+
|
| 48 |
+
os.makedirs(args.outdir, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
margin_width = 50
|
| 51 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 52 |
+
|
| 53 |
+
for k, filename in enumerate(filenames):
|
| 54 |
+
print(f'Progress {k+1}/{len(filenames)}: {filename}')
|
| 55 |
+
|
| 56 |
+
raw_video = cv2.VideoCapture(filename)
|
| 57 |
+
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 58 |
+
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
|
| 59 |
+
|
| 60 |
+
if args.pred_only:
|
| 61 |
+
output_width = frame_width
|
| 62 |
+
else:
|
| 63 |
+
output_width = frame_width * 2 + margin_width
|
| 64 |
+
|
| 65 |
+
output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.mp4')
|
| 66 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height))
|
| 67 |
+
|
| 68 |
+
while raw_video.isOpened():
|
| 69 |
+
ret, raw_frame = raw_video.read()
|
| 70 |
+
if not ret:
|
| 71 |
+
break
|
| 72 |
+
|
| 73 |
+
depth = depth_anything.infer_image(raw_frame, args.input_size)
|
| 74 |
+
|
| 75 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 76 |
+
depth = depth.astype(np.uint8)
|
| 77 |
+
|
| 78 |
+
if args.grayscale:
|
| 79 |
+
depth = np.repeat(depth[..., np.newaxis], 3, axis=-1)
|
| 80 |
+
else:
|
| 81 |
+
depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
|
| 82 |
+
|
| 83 |
+
if args.pred_only:
|
| 84 |
+
out.write(depth)
|
| 85 |
+
else:
|
| 86 |
+
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
|
| 87 |
+
combined_frame = cv2.hconcat([raw_frame, split_region, depth])
|
| 88 |
+
|
| 89 |
+
out.write(combined_frame)
|
| 90 |
+
|
| 91 |
+
raw_video.release()
|
| 92 |
+
out.release()
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2021 Princeton Vision & Learning Lab
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
colorFrom: indigo
|
| 7 |
-
colorTo: blue
|
| 8 |
sdk: gradio
|
| 9 |
sdk_version: 5.38.0
|
| 10 |
app_file: app.py
|
|
@@ -12,3 +10,368 @@ pinned: false
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Diving Into The Fusion Of Monocular Priors For Generalized Stereo Matching
|
| 3 |
+
emoji: 😻
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: indigo
|
|
|
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.38.0
|
| 8 |
app_file: app.py
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
# [ICCV25] Diving into the Fusion of Monocular Priors for Generalized Stereo Matching
|
| 14 |
+
|
| 15 |
+
Detailed images can be found at [Google Driver](https://drive.google.com/file/d/1u2u_-AgxkdtnkQENEf1d2JjtutwrtCPb/view?usp=sharing)
|
| 16 |
+
|
| 17 |
+
<!-- > ⚠️ **Warning**: It is highly recommended to view this markdown in a preview format! -->
|
| 18 |
+
<!-- > ⚠️ **Warning**: We strongly recommend researchers retrain the model on GPUs other than A40 for better results. -->
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Requirements
|
| 22 |
+
```Shell
|
| 23 |
+
conda env create -f envs/environment_GStereo.yaml
|
| 24 |
+
conda activate raftstereo
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## Required Data
|
| 29 |
+
```Shell
|
| 30 |
+
├── datasets
|
| 31 |
+
├── sceneflow
|
| 32 |
+
├── driving
|
| 33 |
+
│ ├── disparity
|
| 34 |
+
│ ├── frames_cleanpass
|
| 35 |
+
│ └── frames_finalpass
|
| 36 |
+
├── flying3d
|
| 37 |
+
│ ├── disparity
|
| 38 |
+
│ ├── frames_cleanpass
|
| 39 |
+
│ └── frames_finalpass
|
| 40 |
+
└── monkaa
|
| 41 |
+
├── disparity
|
| 42 |
+
├── frames_cleanpass
|
| 43 |
+
└── frames_finalpass
|
| 44 |
+
├── Kitti15
|
| 45 |
+
├── testing
|
| 46 |
+
│ ├── image_2
|
| 47 |
+
│ └── image_3
|
| 48 |
+
└── training
|
| 49 |
+
├── disp_noc_0
|
| 50 |
+
├── disp_noc_1
|
| 51 |
+
├── disp_occ_0
|
| 52 |
+
├── disp_occ_1
|
| 53 |
+
├── flow_noc
|
| 54 |
+
├── flow_occ
|
| 55 |
+
├── image_2
|
| 56 |
+
├── image_3
|
| 57 |
+
└── obj_map
|
| 58 |
+
├── Kitti12
|
| 59 |
+
├── testing
|
| 60 |
+
│ ├── calib
|
| 61 |
+
│ ├── colored_0
|
| 62 |
+
│ ├── colored_1
|
| 63 |
+
│ ├── disp_noc
|
| 64 |
+
│ ├── disp_occ
|
| 65 |
+
│ ├── flow_noc
|
| 66 |
+
│ ├── flow_occ
|
| 67 |
+
│ ├── image_0
|
| 68 |
+
│ └── image_1
|
| 69 |
+
└── training
|
| 70 |
+
├── calib
|
| 71 |
+
├── colored_0
|
| 72 |
+
└── colored_1
|
| 73 |
+
├── Middlebury
|
| 74 |
+
└── MiddEval3
|
| 75 |
+
├── testF
|
| 76 |
+
├── testH
|
| 77 |
+
├── testQ
|
| 78 |
+
├── trainingF
|
| 79 |
+
├── trainingH
|
| 80 |
+
└── trainingQ
|
| 81 |
+
├── ETH3D
|
| 82 |
+
├── two_view_testing
|
| 83 |
+
└── two_view_training
|
| 84 |
+
├── delivery_area_1l
|
| 85 |
+
├── delivery_area_1s
|
| 86 |
+
├── delivery_area_2l
|
| 87 |
+
├── Booster
|
| 88 |
+
├── test
|
| 89 |
+
│ ├── balanced
|
| 90 |
+
│ └── unbalanced
|
| 91 |
+
└── train
|
| 92 |
+
├── balanced
|
| 93 |
+
└── unbalanced
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
## Code
|
| 99 |
+
All codes are provided here, including DepthAnything v2.
|
| 100 |
+
Since we modified `dpt.py` to get intermediate features and depth output, please use the modified code.
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
- ### Training
|
| 104 |
+
All training script is presented in [script/train_stereo_raftstereo.sh](script/train_stereo_raftstereo.sh) and [script/train_stereo_raftstereo_depthany.sh](script/train_stereo_raftstereo_depthany.sh).
|
| 105 |
+
Please specify the following variable in scripts before training.
|
| 106 |
+
| variable | meaning |
|
| 107 |
+
|---------------|----------------------|
|
| 108 |
+
| `NCCL_P2P_DISABLE` | We set `NCCL_P2P_DISABLE=1` as the distributed training went wrong at our `A40` GPU. |
|
| 109 |
+
| `CUDA_VISIBLE_DEVICES` | avaliable GPU id, e.g., `CUDA_VISIBLE_DEVICES=0,1,2,3` |
|
| 110 |
+
| `DATASET_ROOT` | the training dataset path, e.g., `./datasets/sceneflow` |
|
| 111 |
+
| `LOG_ROOT` | path to save log file |
|
| 112 |
+
| `TB_ROOT` | path to save tensorboard data |
|
| 113 |
+
| `CKPOINT_ROOT` | path to save checkpoint |
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
In order to reproduce our results, please download `depth_anything_v2_vitl.pth` from DepthAnything v2 before training and specify `--depthany_model_dir` in script shell to path of directory where `depth_anything_v2_vitl.pth` is saved. Here, we do not provide the link as it maybe conflicts to the CVPR guideline.
|
| 117 |
+
We also explain the code for ablation study, in which each experiment is mostly controlled by the `--model_name` used in the training shell.
|
| 118 |
+
| `--model_name` | meaning |
|
| 119 |
+
|-----------------|-------------------------|
|
| 120 |
+
| `RaftStereo` | Original RaftStereo model |
|
| 121 |
+
| `RaftStereoDisp` | The output of GRU is a single channel for disparity instead of two channels for optical flow, `Baseline` in Table 3 of the main text. |
|
| 122 |
+
| `RAFTStereoMast3r` | The pre-trained MASt3R is used as the backbone, and its features are used for cost volume construction, `RaftStereo + backbone Mast3r` in supplemental text. |
|
| 123 |
+
| `RaftStereoNoCTX` | RaftStereo model without context network, `Baseline w/o mono feature` in Table 3 of the main text. |
|
| 124 |
+
| `RAFTStereoDepthAny` | RaftStereo model with our monocular encoder, `Baseline + ME` in Table 3 of the main text. |
|
| 125 |
+
| `RAFTStereoDepthFusion` | RaftStereo model with our monocular encoder, `Baseline + ME + IDF` in Table 3 of the main text. |
|
| 126 |
+
| `RAFTStereoDepthBeta` | RaftStereo model with our monocular encoder and iterative local fusion, `Baseline + ME + ILF` in Table 3 of the main text. |
|
| 127 |
+
| `RAFTStereoDepthBetaNoLBP` | RaftStereo model with our monocular encoder and iterative local fusion without LBPEncoder, `L(6)` and `L(7)` in Table 4 of the main text. |
|
| 128 |
+
| `RAFTStereoDepthMatch` | RaftStereo model with DepthAnything v2 as feature extractor for cost volume construction, `RaftStereo + backbone DepthAnything` in the supplemental text. |
|
| 129 |
+
| `RAFTStereoDepthPostFusion` | RaftStereo model with our monocular encoder, iterative local fusion and post fusion, `Baseline + ME + PF` in Table 3 of the main text. |
|
| 130 |
+
| `RAFTStereoDepthBetaRefine` | RaftStereo model with our monocular encoder, iterative local fusion, and global fusion, `Baseline + ME + ILF + GF` in Table 3 of the main text. |
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
| variable | meaning |
|
| 134 |
+
|--------------------------|-------------------------|
|
| 135 |
+
| `--lbp_neighbor_offsets` | control `LBP Kernel` used in Table 4 of the main text. |
|
| 136 |
+
| `--modulation_ratio` | control `r` amplitude parameter used in Table 4 of the main text. |
|
| 137 |
+
| `--conf_from_fea` | `Cost` or `Hybrid` for `Confidence` used in Table 4 of the main text. |
|
| 138 |
+
| `--refine_pool` | learning registration parameters via pooling in the supplemental text. |
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
The training is launched by following
|
| 142 |
+
```Shell
|
| 143 |
+
bash ./script/train_stereo_raftstereo_depthany.sh EXP_NAME
|
| 144 |
+
```
|
| 145 |
+
`EXP_NAME` specifies the experiment name. We use this name to save each log file, tensorboard data, and checkpoint for different experiments. The corresponding file structure is as follows
|
| 146 |
+
```Shell
|
| 147 |
+
├── runs
|
| 148 |
+
├── ckpoint
|
| 149 |
+
│ ├── RaftStereoDepthAny
|
| 150 |
+
│ ├── RaftStereoMast3r
|
| 151 |
+
│ └── RaftStereoNoCTX
|
| 152 |
+
├── log
|
| 153 |
+
│ ├── RaftStereoDepthAny
|
| 154 |
+
│ ├── RaftStereoMast3r
|
| 155 |
+
│ └── RaftStereoNoCTX
|
| 156 |
+
└── tboard
|
| 157 |
+
├── RaftStereoDepthAny
|
| 158 |
+
├── RaftStereoMast3r
|
| 159 |
+
└── RaftStereoNoCTX
|
| 160 |
+
```
|
| 161 |
+
> ⚠️ **Warning**: **Please follow the training process mentioned in our main text.** We first train the model without the global fusion module. Then, we train the monocular registration of the global fusion module while keeping the other modules frozen with a well-trained model from the first stage. Finally, we train the entire global fusion module while keeping the other modules frozen with a well-trained model from the second stage.
|
| 162 |
+
|
| 163 |
+
- ### Evaluation
|
| 164 |
+
The evaluation script is presented in [script/evaluate_stereo_raftstereo.sh](script/evaluate_stereo_raftstereo.sh).
|
| 165 |
+
We use `--test_exp_name` to specify the evaluation experiment name.
|
| 166 |
+
The results of each experiment are restored in `LOG_ROOT/eval.xlsx`. We also merge all experiments' results in `LOG_ROOT/merged_eval.xlsx` through `python3 merge_sheet.py`.
|
| 167 |
+
The evaluation metrics remain the same for different methods.
|
| 168 |
+
The `mean ± std` is computed via [tools/get_statistics.py](tools/get_statistics.py).
|
| 169 |
+
|
| 170 |
+
- ### Visualization
|
| 171 |
+
We visualize the error map via [script/gen_sample_stereo_raftstereo.sh](script/gen_sample_stereo_raftstereo.sh) and intermediate results via [script/vis_inter_stereo_raftstereo.sh](script/vis_inter_stereo_raftstereo.sh).
|
| 172 |
+
We provide an easy-to-use visualization toolbox to fully understand each module.
|
| 173 |
+
|
| 174 |
+
- ### Demo
|
| 175 |
+
The model weights, pre-trained on SceneFlow, can be downloaded from [Google Drive](https://drive.google.com/file/d/1T1o7soh3p4C_tHzmUd0ZCtnQbVczPmXz/view?usp=sharing).
|
| 176 |
+
The demo used to infer disparity maps from custom image pairs is presented in `infer_stereo_raftstereo.py`. For specific usage, please refer to `script/infer_stereo_raftstereo.sh`.
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
## More Results
|
| 180 |
+
The results after using our custom synthetic data [Trans Dataset](https://github.com/BFZD233/TranScene), which is built for multi-label transparent scenes.
|
| 181 |
+
|
| 182 |
+
<table>
|
| 183 |
+
<thead>
|
| 184 |
+
<tr>
|
| 185 |
+
<th rowspan="3">Method</th>
|
| 186 |
+
<th colspan="21">Booster</th>
|
| 187 |
+
</tr>
|
| 188 |
+
<tr>
|
| 189 |
+
<th colspan="7">ALL</th>
|
| 190 |
+
<th colspan="7">Trans</th>
|
| 191 |
+
<th colspan="7">No_Trans</th>
|
| 192 |
+
</tr>
|
| 193 |
+
<tr>
|
| 194 |
+
<th>EPE</th>
|
| 195 |
+
<th>RMSE</th>
|
| 196 |
+
<th>2px</th>
|
| 197 |
+
<th>3px</th>
|
| 198 |
+
<th>5px</th>
|
| 199 |
+
<th>6px</th>
|
| 200 |
+
<th>8px</th>
|
| 201 |
+
<th>EPE</th>
|
| 202 |
+
<th>RMSE</th>
|
| 203 |
+
<th>2px</th>
|
| 204 |
+
<th>3px</th>
|
| 205 |
+
<th>5px</th>
|
| 206 |
+
<th>6px</th>
|
| 207 |
+
<th>8px</th>
|
| 208 |
+
<th>EPE</th>
|
| 209 |
+
<th>RMSE</th>
|
| 210 |
+
<th>2px</th>
|
| 211 |
+
<th>3px</th>
|
| 212 |
+
<th>5px</th>
|
| 213 |
+
<th>6px</th>
|
| 214 |
+
<th>8px</th>
|
| 215 |
+
</tr>
|
| 216 |
+
</thead>
|
| 217 |
+
<tbody>
|
| 218 |
+
<tr>
|
| 219 |
+
<td>Ours</td>
|
| 220 |
+
<td>2.26</td>
|
| 221 |
+
<td>5.60</td>
|
| 222 |
+
<td>11.02</td>
|
| 223 |
+
<td>8.59</td>
|
| 224 |
+
<td>6.60</td>
|
| 225 |
+
<td>6.00</td>
|
| 226 |
+
<td>5.35</td>
|
| 227 |
+
<td>7.93</td>
|
| 228 |
+
<td>11.03</td>
|
| 229 |
+
<td>59.83</td>
|
| 230 |
+
<td>50.36</td>
|
| 231 |
+
<td>38.44</td>
|
| 232 |
+
<td>33.87</td>
|
| 233 |
+
<td>27.56</td>
|
| 234 |
+
<td>1.52</td>
|
| 235 |
+
<td>3.93</td>
|
| 236 |
+
<td>6.98</td>
|
| 237 |
+
<td>4.97</td>
|
| 238 |
+
<td>3.64</td>
|
| 239 |
+
<td>3.27</td>
|
| 240 |
+
<td>2.89</td>
|
| 241 |
+
</tr>
|
| 242 |
+
<tr>
|
| 243 |
+
<td>Ours+Trans</td>
|
| 244 |
+
<td>1.24</td>
|
| 245 |
+
<td>4.19</td>
|
| 246 |
+
<td>7.91</td>
|
| 247 |
+
<td>5.97</td>
|
| 248 |
+
<td>4.52</td>
|
| 249 |
+
<td>4.08</td>
|
| 250 |
+
<td>3.44</td>
|
| 251 |
+
<td>5.67</td>
|
| 252 |
+
<td>8.42</td>
|
| 253 |
+
<td>46.78</td>
|
| 254 |
+
<td>38.55</td>
|
| 255 |
+
<td>28.65</td>
|
| 256 |
+
<td>25.41</td>
|
| 257 |
+
<td>21.30</td>
|
| 258 |
+
<td>0.75</td>
|
| 259 |
+
<td>3.07</td>
|
| 260 |
+
<td>4.77</td>
|
| 261 |
+
<td>3.23</td>
|
| 262 |
+
<td>2.29</td>
|
| 263 |
+
<td>2.01</td>
|
| 264 |
+
<td>1.59</td>
|
| 265 |
+
</tr>
|
| 266 |
+
</tbody>
|
| 267 |
+
</table>
|
| 268 |
+
|
| 269 |
+
<table>
|
| 270 |
+
<thead>
|
| 271 |
+
<tr>
|
| 272 |
+
<th rowspan="3">Method</th>
|
| 273 |
+
<th colspan="28">Booster</th>
|
| 274 |
+
</tr>
|
| 275 |
+
<tr>
|
| 276 |
+
<th colspan="7">Class 0</th>
|
| 277 |
+
<th colspan="7">Class 1</th>
|
| 278 |
+
<th colspan="7">Class 2</th>
|
| 279 |
+
<th colspan="7">Class 3</th>
|
| 280 |
+
</tr>
|
| 281 |
+
<tr>
|
| 282 |
+
<th>EPE</th>
|
| 283 |
+
<th>RMSE</th>
|
| 284 |
+
<th>2px</th>
|
| 285 |
+
<th>3px</th>
|
| 286 |
+
<th>5px</th>
|
| 287 |
+
<th>6px</th>
|
| 288 |
+
<th>8px</th>
|
| 289 |
+
<th>EPE</th>
|
| 290 |
+
<th>RMSE</th>
|
| 291 |
+
<th>2px</th>
|
| 292 |
+
<th>3px</th>
|
| 293 |
+
<th>5px</th>
|
| 294 |
+
<th>6px</th>
|
| 295 |
+
<th>8px</th>
|
| 296 |
+
<th>EPE</th>
|
| 297 |
+
<th>RMSE</th>
|
| 298 |
+
<th>2px</th>
|
| 299 |
+
<th>3px</th>
|
| 300 |
+
<th>5px</th>
|
| 301 |
+
<th>6px</th>
|
| 302 |
+
<th>8px</th>
|
| 303 |
+
<th>EPE</th>
|
| 304 |
+
<th>RMSE</th>
|
| 305 |
+
<th>2px</th>
|
| 306 |
+
<th>3px</th>
|
| 307 |
+
<th>5px</th>
|
| 308 |
+
<th>6px</th>
|
| 309 |
+
<th>8px</th>
|
| 310 |
+
</tr>
|
| 311 |
+
</thead>
|
| 312 |
+
<tbody>
|
| 313 |
+
<tr>
|
| 314 |
+
<td>Ours</td>
|
| 315 |
+
<td>0.79</td>
|
| 316 |
+
<td>3.02</td>
|
| 317 |
+
<td>5.90</td>
|
| 318 |
+
<td>4.57</td>
|
| 319 |
+
<td>3.17</td>
|
| 320 |
+
<td>2.58</td>
|
| 321 |
+
<td>1.45</td>
|
| 322 |
+
<td>1.53</td>
|
| 323 |
+
<td>4.70</td>
|
| 324 |
+
<td>12.67</td>
|
| 325 |
+
<td>7.80</td>
|
| 326 |
+
<td>4.88</td>
|
| 327 |
+
<td>3.96</td>
|
| 328 |
+
<td>3.14</td>
|
| 329 |
+
<td>5.32</td>
|
| 330 |
+
<td>6.39</td>
|
| 331 |
+
<td>23.34</td>
|
| 332 |
+
<td>17.62</td>
|
| 333 |
+
<td>13.50</td>
|
| 334 |
+
<td>12.80</td>
|
| 335 |
+
<td>12.15</td>
|
| 336 |
+
<td>7.93</td>
|
| 337 |
+
<td>11.03</td>
|
| 338 |
+
<td>59.83</td>
|
| 339 |
+
<td>50.36</td>
|
| 340 |
+
<td>38.44</td>
|
| 341 |
+
<td>33.87</td>
|
| 342 |
+
<td>27.56</td>
|
| 343 |
+
</tr>
|
| 344 |
+
<tr>
|
| 345 |
+
<td>Ours+Trans</td>
|
| 346 |
+
<td>0.75</td>
|
| 347 |
+
<td>2.99</td>
|
| 348 |
+
<td>5.15</td>
|
| 349 |
+
<td>4.08</td>
|
| 350 |
+
<td>3.00</td>
|
| 351 |
+
<td>2.59</td>
|
| 352 |
+
<td>1.73</td>
|
| 353 |
+
<td>1.40</td>
|
| 354 |
+
<td>4.74</td>
|
| 355 |
+
<td>9.17</td>
|
| 356 |
+
<td>5.63</td>
|
| 357 |
+
<td>3.80</td>
|
| 358 |
+
<td>3.37</td>
|
| 359 |
+
<td>2.86</td>
|
| 360 |
+
<td>1.62</td>
|
| 361 |
+
<td>2.26</td>
|
| 362 |
+
<td>13.51</td>
|
| 363 |
+
<td>10.23</td>
|
| 364 |
+
<td>7.40</td>
|
| 365 |
+
<td>6.50</td>
|
| 366 |
+
<td>4.93</td>
|
| 367 |
+
<td>5.67</td>
|
| 368 |
+
<td>8.42</td>
|
| 369 |
+
<td>46.78</td>
|
| 370 |
+
<td>38.55</td>
|
| 371 |
+
<td>28.65</td>
|
| 372 |
+
<td>25.41</td>
|
| 373 |
+
<td>21.30</td>
|
| 374 |
+
</tr>
|
| 375 |
+
</tbody>
|
| 376 |
+
</table>
|
| 377 |
+
|
abs_cost/abs_cost_kernel.cu
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <torch/extension.h>
|
| 2 |
+
#include <cuda.h>
|
| 3 |
+
#include <cuda_runtime.h>
|
| 4 |
+
#include <vector>
|
| 5 |
+
#include <cuda_fp16.h>
|
| 6 |
+
#include <cuda_runtime.h>
|
| 7 |
+
#include <math.h>
|
| 8 |
+
|
| 9 |
+
#include <ATen/ATen.h>
|
| 10 |
+
#include <ATen/NativeFunctions.h>
|
| 11 |
+
#include <ATen/Parallel.h>
|
| 12 |
+
|
| 13 |
+
#define BLOCK 16
|
| 14 |
+
|
| 15 |
+
// (B,H,W1,C) (B,H,W2,C) -> (B,H,W1,W2)
|
| 16 |
+
|
| 17 |
+
__forceinline__ __device__ bool within_bounds(int h, int w1, int w2, int H, int W1, int W2) {
|
| 18 |
+
return h >= 0 && h < H && w1 >= 0 && w1 < W1 && w2 >= 0 && w2 < W2;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
template <typename scalar_t>
|
| 22 |
+
__global__ void absolute_difference_forward_kernel(
|
| 23 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
| 24 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
| 25 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> result)
|
| 26 |
+
{
|
| 27 |
+
const int C = fmap1.size(3);
|
| 28 |
+
const int H = fmap1.size(1);
|
| 29 |
+
const int W1 = fmap1.size(2);
|
| 30 |
+
const int W2 = fmap2.size(2);
|
| 31 |
+
|
| 32 |
+
// 获取当前线程的索引
|
| 33 |
+
const int w1 = blockIdx.x * blockDim.x + threadIdx.x;
|
| 34 |
+
const int w2 = blockIdx.y * blockDim.y + threadIdx.y;
|
| 35 |
+
const int h = blockIdx.z % H;
|
| 36 |
+
const int b = blockIdx.z / H;
|
| 37 |
+
|
| 38 |
+
if (!within_bounds(h, w1, w2, H, W1, W2)) {
|
| 39 |
+
return;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
scalar_t sum = 0.0;
|
| 43 |
+
for (int c = 0; i < C; ++c) {
|
| 44 |
+
scalar_t diff = fabs(fmap1[b][h][w1][c] - fmap2[b][h][w2][c]);
|
| 45 |
+
sum += diff;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
result[b][h][w1][w2] = sum;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
template <typename scalar_t>
|
| 52 |
+
__global__ void absolute_difference_backward_kernel_fmap1(
|
| 53 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
| 54 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
| 55 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> grad_output,
|
| 56 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> grad_fmap1)
|
| 57 |
+
{
|
| 58 |
+
const int k = blockIdx.x * blockDim.x + threadIdx.x;
|
| 59 |
+
const int h = blockIdx.y * blockDim.y + threadIdx.y;
|
| 60 |
+
const int n = blockIdx.z;
|
| 61 |
+
|
| 62 |
+
const int i_size = fmap1.size(1);
|
| 63 |
+
const int j_size = fmap1.size(2);
|
| 64 |
+
const int k_size = fmap1.size(3);
|
| 65 |
+
const int h_size = fmap2.size(3);
|
| 66 |
+
|
| 67 |
+
if (!within_bounds(h, k, j_size, k_size)) {
|
| 68 |
+
return;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
for (int i = 0; i < i_size; ++i) {
|
| 72 |
+
for (int j = 0; j < j_size; ++j) {
|
| 73 |
+
scalar_t grad = 0.0;
|
| 74 |
+
|
| 75 |
+
scalar_t diff = fmap1[n][i][j][k] - fmap2[n][i][j][h];
|
| 76 |
+
if (diff >= 0) {
|
| 77 |
+
grad = grad_output[n][h][k][h];
|
| 78 |
+
} else {
|
| 79 |
+
grad = -grad_output[n][h][k][h];
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
grad_fmap1[n][i][j][k] += grad;
|
| 83 |
+
}
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
template <typename scalar_t>
|
| 88 |
+
__global__ void absolute_difference_backward_kernel_fmap2(
|
| 89 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
| 90 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
| 91 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> grad_output,
|
| 92 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> grad_fmap2)
|
| 93 |
+
{
|
| 94 |
+
const int k = blockIdx.x * blockDim.x + threadIdx.x;
|
| 95 |
+
const int h = blockIdx.y * blockDim.y + threadIdx.y;
|
| 96 |
+
const int n = blockIdx.z;
|
| 97 |
+
|
| 98 |
+
const int i_size = fmap1.size(1);
|
| 99 |
+
const int j_size = fmap1.size(2);
|
| 100 |
+
const int k_size = fmap1.size(3);
|
| 101 |
+
const int h_size = fmap2.size(3);
|
| 102 |
+
|
| 103 |
+
if (!within_bounds(h, k, j_size, k_size)) {
|
| 104 |
+
return;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
for (int i = 0; i < i_size; ++i) {
|
| 108 |
+
for (int j = 0; j < j_size; ++j) {
|
| 109 |
+
scalar_t grad = 0.0;
|
| 110 |
+
|
| 111 |
+
scalar_t diff = fmap2[n][i][j][h] - fmap1[n][i][j][k];
|
| 112 |
+
if (diff >= 0) {
|
| 113 |
+
grad = grad_output[n][h][k][h];
|
| 114 |
+
} else {
|
| 115 |
+
grad = -grad_output[n][h][k][h];
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
grad_fmap2[n][i][j][h] += grad;
|
| 119 |
+
}
|
| 120 |
+
}
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
/**
|
| 124 |
+
* compute correlation between each element (h,w1)~(h,w2).
|
| 125 |
+
* (B,H,W1,C) (B,H,W2,C) -> (B,H,W1,W2)
|
| 126 |
+
*/
|
| 127 |
+
std::vector<torch::Tensor> absolute_difference_cuda_forward(
|
| 128 |
+
torch::Tensor fmap1,
|
| 129 |
+
torch::Tensor fmap2)
|
| 130 |
+
{
|
| 131 |
+
const auto B = fmap1.size(0);
|
| 132 |
+
const auto H = fmap1.size(1);
|
| 133 |
+
const auto W1 = fmap1.size(2);
|
| 134 |
+
const auto W2 = fmap2.size(2);
|
| 135 |
+
|
| 136 |
+
const dim3 blocks((W1 + BLOCK - 1) / BLOCK,
|
| 137 |
+
(W2 + BLOCK - 1) / BLOCK,
|
| 138 |
+
B*H);
|
| 139 |
+
|
| 140 |
+
const dim3 threads(BLOCK, BLOCK);
|
| 141 |
+
|
| 142 |
+
auto opts = fmap1.options();
|
| 143 |
+
torch::Tensor result = torch::zeros({B, H, W1, W2}, opts);
|
| 144 |
+
|
| 145 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(fmap1.scalar_type(), "absolute_difference_forward_kernel", ([&] {
|
| 146 |
+
absolute_difference_forward_kernel<scalar_t><<<blocks, threads>>>(
|
| 147 |
+
fmap1.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 148 |
+
fmap2.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 149 |
+
result.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>());
|
| 150 |
+
}));
|
| 151 |
+
|
| 152 |
+
return {result};
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
std::vector<torch::Tensor> absolute_difference_cuda_backward(
|
| 156 |
+
torch::Tensor fmap1,
|
| 157 |
+
torch::Tensor fmap2,
|
| 158 |
+
torch::Tensor grad_output)
|
| 159 |
+
{
|
| 160 |
+
const auto B = fmap1.size(0);
|
| 161 |
+
const auto H = fmap1.size(1);
|
| 162 |
+
const auto W1 = fmap1.size(2);
|
| 163 |
+
const auto W2 = fmap2.size(2);
|
| 164 |
+
|
| 165 |
+
auto grad_fmap1 = torch::zeros_like(fmap1);
|
| 166 |
+
auto grad_fmap2 = torch::zeros_like(fmap2);
|
| 167 |
+
|
| 168 |
+
const dim3 blocks((k_size + BLOCK - 1) / BLOCK,
|
| 169 |
+
(h_size + BLOCK - 1) / BLOCK,
|
| 170 |
+
batch_size);
|
| 171 |
+
|
| 172 |
+
const dim3 threads(BLOCK, BLOCK);
|
| 173 |
+
|
| 174 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(fmap1.scalar_type(), "absolute_difference_backward_kernel_fmap1", ([&] {
|
| 175 |
+
absolute_difference_backward_kernel_fmap1<scalar_t><<<blocks, threads>>>(
|
| 176 |
+
fmap1.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 177 |
+
fmap2.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 178 |
+
grad_output.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 179 |
+
grad_fmap1.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>());
|
| 180 |
+
}));
|
| 181 |
+
|
| 182 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(fmap2.scalar_type(), "absolute_difference_backward_kernel_fmap2", ([&] {
|
| 183 |
+
absolute_difference_backward_kernel_fmap2<scalar_t><<<blocks, threads>>>(
|
| 184 |
+
fmap1.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 185 |
+
fmap2.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 186 |
+
grad_output.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
|
| 187 |
+
grad_fmap2.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>());
|
| 188 |
+
}));
|
| 189 |
+
|
| 190 |
+
return {grad_fmap1, grad_fmap2};
|
| 191 |
+
}
|
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function, division
|
| 2 |
+
import sys
|
| 3 |
+
sys.path.insert(0,'core')
|
| 4 |
+
sys.path.append('core/utils')
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import argparse
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import cv2
|
| 10 |
+
from core.raft_stereo_depthbeta_refine import RAFTStereoDepthBetaRefine
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
from core.utils.utils import InputPadder
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
parser = argparse.ArgumentParser()
|
| 19 |
+
parser.add_argument('--root', help="dataset root", default=None)
|
| 20 |
+
parser.add_argument('--sv_root', help="visualization root", default=None)
|
| 21 |
+
parser.add_argument('--test_exp_name', default='', help="name your experiment in testing")
|
| 22 |
+
parser.add_argument('--mast3r_model_path', default='MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth', help="pretrained model path for MaSt3R")
|
| 23 |
+
parser.add_argument('--depthany_model_dir', default='./dav2_models', help="directory of pretrained model path for DepthAnything")
|
| 24 |
+
parser.add_argument('--restore_ckpt', help="restore checkpoint", default="./ckpts/diving_stereo.pth")
|
| 25 |
+
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
| 26 |
+
parser.add_argument('--valid_iters', type=int, default=32, help='number of flow-field updates during forward pass')
|
| 27 |
+
parser.add_argument('--eval', action='store_true', help='evaluation mode')
|
| 28 |
+
parser.add_argument('--is_test', action='store_true', help='on testing')
|
| 29 |
+
|
| 30 |
+
# Architecure choices
|
| 31 |
+
parser.add_argument('--hidden_dims', nargs='+', type=int, default=[128]*3, help="hidden state and context dimensions")
|
| 32 |
+
parser.add_argument('--corr_implementation', choices=["reg", "alt", "reg_cuda", "alt_cuda"], default="reg", help="correlation volume implementation")
|
| 33 |
+
parser.add_argument('--shared_backbone', action='store_true', help="use a single backbone for the context and feature encoders")
|
| 34 |
+
parser.add_argument('--corr_levels', type=int, default=4, help="number of levels in the correlation pyramid")
|
| 35 |
+
parser.add_argument('--corr_radius', type=int, default=4, help="width of the correlation pyramid")
|
| 36 |
+
parser.add_argument('--n_downsample', type=int, default=2, help="resolution of the disparity field (1/2^K)")
|
| 37 |
+
parser.add_argument('--context_norm', type=str, default="batch", choices=['group', 'batch', 'instance', 'none'], help="normalization of context encoder")
|
| 38 |
+
parser.add_argument('--slow_fast_gru', action='store_true', help="iterate the low-res GRUs more frequently")
|
| 39 |
+
parser.add_argument('--n_gru_layers', type=int, default=3, help="number of hidden GRU levels")
|
| 40 |
+
|
| 41 |
+
parser.add_argument('--lbp_neighbor_offsets', default='(-5,-5), (5,5), (5,-5), (-5,5), (-3,0), (3,0), (0,-3), (0,3)', help="determine the neighbors used in LBP encoder")
|
| 42 |
+
parser.add_argument('--modulation_ratio', type=float, default=1., help="hyperparameters for modulation")
|
| 43 |
+
parser.add_argument('--modulation_alg', choices=["linear", "sigmoid"], default="linear", help="rescale modulation")
|
| 44 |
+
parser.add_argument('--conf_from_fea', action='store_true', help="confidence in refinement not only from cost volume but also from other features")
|
| 45 |
+
parser.add_argument('--refine_pool', action='store_true', help="use pooling in refinement")
|
| 46 |
+
parser.add_argument('--refine_unet', action='store_true', help="use EfficientUnet in refinement")
|
| 47 |
+
|
| 48 |
+
parser.add_argument('--improvement', action='store_true', help="visualize improvement map (error_map[i] - error_map[i-1])")
|
| 49 |
+
parser.add_argument('--movement', action='store_true', help="visualize movement map (flow_pr[i] - flow_pr[i-1])")
|
| 50 |
+
parser.add_argument('--acceleration', action='store_true', help="visualize acceleration map (movement_map[i] - movement_map[i-1])")
|
| 51 |
+
parser.add_argument('--mask', action='store_true', help="visualize mask")
|
| 52 |
+
parser.add_argument('--binary_thold', type=float, default=0.5, help="visualize binary mask")
|
| 53 |
+
|
| 54 |
+
args = parser.parse_args()
|
| 55 |
+
args.conf_from_fea = True
|
| 56 |
+
args.eval = True
|
| 57 |
+
|
| 58 |
+
model = RAFTStereoDepthBetaRefine(args)
|
| 59 |
+
model = torch.nn.DataParallel(model, device_ids=[0])
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
checkpoint_path = hf_hub_download(
|
| 63 |
+
repo_id="BFZD/Diving-into-the-Fusion-of-Monocular-Priors-for-Generalized-Stereo-Matching",
|
| 64 |
+
filename="ckpts/diving_stereo.pth",
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
| 68 |
+
# model.load_state_dict(checkpoint, strict=True)
|
| 69 |
+
new_state_dict = {}
|
| 70 |
+
for key, value in checkpoint.items():
|
| 71 |
+
if key.find("lbp_encoder.lbp_conv") != -1:
|
| 72 |
+
continue
|
| 73 |
+
new_state_dict[key] = value
|
| 74 |
+
# model.load_state_dict(new_state_dict, strict=True)
|
| 75 |
+
model.load_state_dict(new_state_dict, strict=False)
|
| 76 |
+
|
| 77 |
+
# model.cuda()
|
| 78 |
+
model.eval()
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def predict(image1, image2):
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
|
| 85 |
+
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
|
| 86 |
+
image1 = image1[None][:,:3,:,:]
|
| 87 |
+
image2 = image2[None][:,:3,:,:]
|
| 88 |
+
padder = InputPadder(image1.shape, divis_by=32)
|
| 89 |
+
image1, image2 = padder.pad(image1, image2)
|
| 90 |
+
atom_dict = model(image1, image2, iters=args.valid_iters, test_mode=False, vis_mode=True)
|
| 91 |
+
output = atom_dict['disp_predictions'][-1].abs().cpu().numpy()
|
| 92 |
+
disp = padder.unpad(output)
|
| 93 |
+
disp = disp.squeeze()
|
| 94 |
+
normalized_disp = (disp - disp.min()) / (disp.max() - disp.min())
|
| 95 |
+
cmap = plt.get_cmap('jet')
|
| 96 |
+
colored_disp = cmap(normalized_disp)[:, :, :3] # Get RGB channels
|
| 97 |
+
|
| 98 |
+
return colored_disp
|
| 99 |
+
interface = gr.Interface(fn=predict,
|
| 100 |
+
inputs=[gr.Image(label="Left Image"),
|
| 101 |
+
gr.Image(label="Right Image")],
|
| 102 |
+
outputs="image")
|
| 103 |
+
interface.launch()
|
core/ManStereo.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import logging
|
| 4 |
+
import numpy as np
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
from core.update import ManifoldBasicMultiUpdateBlock
|
| 12 |
+
from core.extractor import BasicEncoder, MultiBasicEncoder, ResidualBlock
|
| 13 |
+
from core.corr import CorrBlock1D, PytorchAlternateCorrBlock1D, CorrBlockFast1D, AlternateCorrBlock
|
| 14 |
+
from core.utils.utils import coords_grid, upflow8, LoggerCommon
|
| 15 |
+
from core.confidence import OffsetConfidence
|
| 16 |
+
from core.refinement import Refinement, UpdateHistory
|
| 17 |
+
from core import geometry as GEO
|
| 18 |
+
from core.utils.plane import get_pos, convert2patch, predict_disp
|
| 19 |
+
|
| 20 |
+
logger = LoggerCommon("ARCHI")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
autocast = torch.cuda.amp.autocast
|
| 24 |
+
except:
|
| 25 |
+
# dummy autocast for PyTorch < 1.6
|
| 26 |
+
class autocast:
|
| 27 |
+
def __init__(self, enabled):
|
| 28 |
+
pass
|
| 29 |
+
def __enter__(self):
|
| 30 |
+
pass
|
| 31 |
+
def __exit__(self, *args):
|
| 32 |
+
pass
|
| 33 |
+
|
| 34 |
+
class RAFTStereo(nn.Module):
|
| 35 |
+
def __init__(self, args):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.args = args
|
| 38 |
+
|
| 39 |
+
context_dims = args.hidden_dims
|
| 40 |
+
|
| 41 |
+
self.cnet = MultiBasicEncoder(output_dim=[args.hidden_dims, context_dims], norm_fn=args.context_norm, downsample=args.n_downsample)
|
| 42 |
+
self.update_block = ManifoldBasicMultiUpdateBlock(self.args, hidden_dims=args.hidden_dims)
|
| 43 |
+
|
| 44 |
+
self.context_zqr_convs = nn.ModuleList([nn.Conv2d(context_dims[i], args.hidden_dims[i]*3, 3, padding=3//2) for i in range(self.args.n_gru_layers)])
|
| 45 |
+
|
| 46 |
+
if args.shared_backbone:
|
| 47 |
+
self.conv2 = nn.Sequential(
|
| 48 |
+
ResidualBlock(128, 128, 'instance', stride=1),
|
| 49 |
+
nn.Conv2d(128, 256, 3, padding=1))
|
| 50 |
+
else:
|
| 51 |
+
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', downsample=args.n_downsample)
|
| 52 |
+
|
| 53 |
+
if args.confidence:
|
| 54 |
+
self.confidence_computer = OffsetConfidence(args)
|
| 55 |
+
|
| 56 |
+
if args.geo_estimator=="geometry_mlp":
|
| 57 |
+
self.geometry_builder = GEO.Geometry_MLP(args)
|
| 58 |
+
elif args.geo_estimator=="geometry_conv":
|
| 59 |
+
self.geometry_builder = GEO.Geometry_Conv(args)
|
| 60 |
+
elif args.geo_estimator=="geometry_conv_split":
|
| 61 |
+
self.geometry_builder = GEO.Geometry_Conv_Split(args)
|
| 62 |
+
|
| 63 |
+
if args.refinement is not None and len(args.refinement)>0:
|
| 64 |
+
if self.args.slant is None or len(self.args.slant)==0 :
|
| 65 |
+
dim_disp = 1
|
| 66 |
+
elif self.args.slant in ["slant", "slant_local"] :
|
| 67 |
+
dim_disp = 6
|
| 68 |
+
|
| 69 |
+
if args.refinement.lower()=="refinement":
|
| 70 |
+
self.refine = Refinement(args, in_chans=256, dim_fea=96, dim_disp=dim_disp)
|
| 71 |
+
else:
|
| 72 |
+
raise Exception("No such refinement: {}".format(args.refinement))
|
| 73 |
+
|
| 74 |
+
if self.args.update_his:
|
| 75 |
+
self.update_hist = UpdateHistory(args, 128, dim_disp)
|
| 76 |
+
|
| 77 |
+
logger.info(f"RAFTStereo ~ " +\
|
| 78 |
+
f"Confidence: {args.confidence}, offset_memory_size: {args.offset_memory_size}, " +\
|
| 79 |
+
f"offset_memory_last_iter: {args.offset_memory_last_iter}, " +\
|
| 80 |
+
f"slant: {args.slant}, slant_norm: {args.slant_norm}, " +\
|
| 81 |
+
f"geo estimator: {args.geo_estimator}, geo_fusion: {args.geo_fusion}, " +\
|
| 82 |
+
f"refine: {args.refinement}, refine_win_size: {args.refine_win_size}, num_heads:{args.num_heads}, " +\
|
| 83 |
+
f"split_win: {args.split_win}, refine_start_itr: {args.refine_start_itr}, " +\
|
| 84 |
+
f"update_his: {args.update_his}, U_thold: {args.U_thold}, " +\
|
| 85 |
+
f"stop_freeze_bn: {args.stop_freeze_bn}" )
|
| 86 |
+
|
| 87 |
+
def freeze_bn(self):
|
| 88 |
+
for m in self.modules():
|
| 89 |
+
if isinstance(m, nn.BatchNorm2d):
|
| 90 |
+
m.eval()
|
| 91 |
+
|
| 92 |
+
def initialize_flow(self, img):
|
| 93 |
+
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
|
| 94 |
+
N, _, H, W = img.shape
|
| 95 |
+
|
| 96 |
+
coords0 = coords_grid(N, H, W).to(img.device)
|
| 97 |
+
coords1 = coords_grid(N, H, W).to(img.device)
|
| 98 |
+
|
| 99 |
+
return coords0, coords1
|
| 100 |
+
|
| 101 |
+
def upsample_flow(self, flow, mask):
|
| 102 |
+
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
| 103 |
+
N, D, H, W = flow.shape
|
| 104 |
+
factor = 2 ** self.args.n_downsample
|
| 105 |
+
mask = mask.view(N, 1, 9, factor, factor, H, W)
|
| 106 |
+
mask = torch.softmax(mask, dim=2)
|
| 107 |
+
|
| 108 |
+
up_flow = F.unfold(factor * flow, [3,3], padding=1)
|
| 109 |
+
up_flow = up_flow.view(N, D, 9, 1, 1, H, W)
|
| 110 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
| 111 |
+
|
| 112 |
+
img_coord = None
|
| 113 |
+
if self.args.geo_estimator is not None and len(self.args.geo_estimator)>0:
|
| 114 |
+
img_coord = get_pos(H*factor, W*factor, disp=None,
|
| 115 |
+
slant=self.args.slant,
|
| 116 |
+
slant_norm=self.args.slant_norm,
|
| 117 |
+
patch_size=factor,
|
| 118 |
+
device=flow.device) # (1,2,H*factor,W*factor)
|
| 119 |
+
img_coord = img_coord.repeat(N,1,1,1)
|
| 120 |
+
|
| 121 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
| 122 |
+
return up_flow.reshape(N, D, factor*H, factor*W), img_coord
|
| 123 |
+
|
| 124 |
+
def upsample_geo(self, mask=None, mask_disp=None, params=None):
|
| 125 |
+
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
| 126 |
+
N, D, H, W = params.shape
|
| 127 |
+
factor = 2 ** self.args.n_downsample
|
| 128 |
+
if mask is not None:
|
| 129 |
+
mask = mask.view(N, 1, 9, factor, factor, H, W)
|
| 130 |
+
mask = torch.softmax(mask, dim=2) # (B,1,9,factor,factor,H,W)
|
| 131 |
+
if mask_disp is not None:
|
| 132 |
+
mask_disp = mask_disp.view(N, 1, 9, factor, factor, H, W)
|
| 133 |
+
mask_disp = torch.softmax(mask_disp, dim=2) # (B,1,9,factor,factor,H,W)
|
| 134 |
+
|
| 135 |
+
# d_p = a_q\cdot\Delta u_{q\to p} + b_q\cdot\Delta v_{q\to p} + d_q
|
| 136 |
+
delta_pq = get_pos(H*factor, W*factor, disp=None,
|
| 137 |
+
slant=self.args.slant,
|
| 138 |
+
slant_norm=self.args.slant_norm,
|
| 139 |
+
patch_size=factor,
|
| 140 |
+
device=params.device) # (1,2,H*factor,W*factor)
|
| 141 |
+
patch_delta_pq = convert2patch(delta_pq, patch_size=factor, div_last=False).detach() # (1,2,factor*factor,H,W)
|
| 142 |
+
|
| 143 |
+
disp = predict_disp(params, patch_delta_pq, patch_size=factor, mul_last=True) # (B,factor*factor,H,W)
|
| 144 |
+
|
| 145 |
+
if mask_disp is not None:
|
| 146 |
+
disp = F.unfold(disp, [3,3], padding=1) # (B,factor*factor*9,H,W)
|
| 147 |
+
disp = disp.view(N, 1, factor, factor, 9, H, W) # (B,1,factor,factor,9,H,W)
|
| 148 |
+
disp = disp.permute((0,1,4,2,3,5,6)) # (B,1,9,factor,factor,H,W)
|
| 149 |
+
disp = torch.sum(mask_disp * disp, dim=2) # (B,1,factor,factor,H,W)
|
| 150 |
+
disp = disp.permute(0, 1, 4, 2, 5, 3) # (B,1,H,factor,W,factor)
|
| 151 |
+
return disp.reshape(N, 1, factor*H, factor*W)
|
| 152 |
+
|
| 153 |
+
elif mask is not None:
|
| 154 |
+
disp = F.unfold(disp, [3,3], padding=1) # (B,factor*factor*9,H,W)
|
| 155 |
+
disp = disp.view(N, 1, factor, factor, 9, H, W) # (B,1,factor,factor,9,H,W)
|
| 156 |
+
disp = disp.permute((0,1,4,2,3,5,6)) # (B,1,9,factor,factor,H,W)
|
| 157 |
+
disp = torch.sum(mask * disp, dim=2) # (B,1,factor,factor,H,W)
|
| 158 |
+
disp = disp.permute(0, 1, 4, 2, 5, 3) # (B,1,H,factor,W,factor)
|
| 159 |
+
return disp.reshape(N, 1, factor*H, factor*W)
|
| 160 |
+
|
| 161 |
+
disp = F.fold(disp.flatten(-2,-1), (H*factor,W*factor), kernel_size=factor, stride=factor).view(N,1,H*factor,W*factor)
|
| 162 |
+
return disp
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def forward(self, image1, image2, iters=12, flow_init=None,
|
| 166 |
+
test_mode=False, vis_mode=False, enable_refinement=True):
|
| 167 |
+
""" Estimate optical flow between pair of frames """
|
| 168 |
+
|
| 169 |
+
image1 = (2 * (image1 / 255.0) - 1.0).contiguous()
|
| 170 |
+
image2 = (2 * (image2 / 255.0) - 1.0).contiguous()
|
| 171 |
+
|
| 172 |
+
# run the context network
|
| 173 |
+
with autocast(enabled=self.args.mixed_precision):
|
| 174 |
+
if self.args.shared_backbone:
|
| 175 |
+
*cnet_list, x = self.cnet(torch.cat((image1, image2), dim=0), dual_inp=True, num_layers=self.args.n_gru_layers)
|
| 176 |
+
fmap1, fmap2 = self.conv2(x).split(dim=0, split_size=x.shape[0]//2)
|
| 177 |
+
else:
|
| 178 |
+
cnet_list = self.cnet(image1, num_layers=self.args.n_gru_layers)
|
| 179 |
+
fmap1, fmap2 = self.fnet([image1, image2])
|
| 180 |
+
net_list = [torch.tanh(x[0]) for x in cnet_list]
|
| 181 |
+
inp_list = [torch.relu(x[1]) for x in cnet_list]
|
| 182 |
+
|
| 183 |
+
# Rather than running the GRU's conv layers on the context features multiple times, we do it once at the beginning
|
| 184 |
+
inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)]
|
| 185 |
+
|
| 186 |
+
if self.args.corr_implementation == "reg": # Default
|
| 187 |
+
corr_block = CorrBlock1D
|
| 188 |
+
fmap1, fmap2 = fmap1.float(), fmap2.float()
|
| 189 |
+
elif self.args.corr_implementation == "alt": # More memory efficient than reg
|
| 190 |
+
corr_block = PytorchAlternateCorrBlock1D
|
| 191 |
+
fmap1, fmap2 = fmap1.float(), fmap2.float()
|
| 192 |
+
elif self.args.corr_implementation == "reg_cuda": # Faster version of reg
|
| 193 |
+
corr_block = CorrBlockFast1D
|
| 194 |
+
elif self.args.corr_implementation == "alt_cuda": # Faster version of alt
|
| 195 |
+
corr_block = AlternateCorrBlock
|
| 196 |
+
corr_fn = corr_block(fmap1, fmap2, radius=self.args.corr_radius, num_levels=self.args.corr_levels)
|
| 197 |
+
|
| 198 |
+
coords0, coords1 = self.initialize_flow(net_list[0])
|
| 199 |
+
|
| 200 |
+
if flow_init is not None:
|
| 201 |
+
coords1 = coords1 + flow_init
|
| 202 |
+
|
| 203 |
+
flow_predictions = []
|
| 204 |
+
disp_predictions = []
|
| 205 |
+
disp_predictions_refine = []
|
| 206 |
+
params_list = []
|
| 207 |
+
params_list_refine = []
|
| 208 |
+
confidence_list = []
|
| 209 |
+
offset_memory = []
|
| 210 |
+
for itr in range(iters):
|
| 211 |
+
coords1 = coords1.detach()
|
| 212 |
+
corr = corr_fn(coords1) # index correlation volume
|
| 213 |
+
flow = coords1 - coords0
|
| 214 |
+
|
| 215 |
+
with autocast(enabled=self.args.mixed_precision):
|
| 216 |
+
## first-stage in geometry estimation
|
| 217 |
+
if self.args.n_gru_layers == 3 and self.args.slow_fast_gru: # Update low-res GRU
|
| 218 |
+
net_list = self.update_block(net_list, inp_list, iter32=True, iter16=False, iter08=False, update=False)
|
| 219 |
+
if self.args.n_gru_layers >= 2 and self.args.slow_fast_gru:# Update low-res GRU and mid-res GRU
|
| 220 |
+
net_list = self.update_block(net_list, inp_list, iter32=self.args.n_gru_layers==3, iter16=True, iter08=False, update=False)
|
| 221 |
+
net_list, up_mask, delta_flow, up_mask_disp = self.update_block(net_list, inp_list, corr, flow, iter32=self.args.n_gru_layers==3, iter16=self.args.n_gru_layers>=2)
|
| 222 |
+
|
| 223 |
+
## region detection: acquire confidence
|
| 224 |
+
if self.args.confidence:
|
| 225 |
+
offset_memory.append(delta_flow[:,0:2])
|
| 226 |
+
if itr<self.args.offset_memory_size:
|
| 227 |
+
confidence = None
|
| 228 |
+
else:
|
| 229 |
+
if self.args.offset_memory_last_iter<0 or itr<=self.args.offset_memory_last_iter:
|
| 230 |
+
input_offset_mem = offset_memory[-self.args.offset_memory_size:]
|
| 231 |
+
else:
|
| 232 |
+
start_itr = self.args.offset_memory_last_iter - self.args.offset_memory_size
|
| 233 |
+
end_itr = self.args.offset_memory_last_iter
|
| 234 |
+
input_offset_mem = offset_memory[start_itr:end_itr]
|
| 235 |
+
confidence = self.confidence_computer(inp_list[0], input_offset_mem)
|
| 236 |
+
else:
|
| 237 |
+
confidence = None
|
| 238 |
+
confidence_list.append(confidence)
|
| 239 |
+
|
| 240 |
+
# in stereo mode, project flow onto epipolar
|
| 241 |
+
delta_flow[:,1] = 0.0
|
| 242 |
+
|
| 243 |
+
# F(t+1) = F(t) + \Delta(t)
|
| 244 |
+
coords1 = coords1 + delta_flow
|
| 245 |
+
flow = coords1 - coords0
|
| 246 |
+
|
| 247 |
+
# We do not need to upsample or output intermediate results in test_mode for raftStereo
|
| 248 |
+
if test_mode and itr < iters-1 and \
|
| 249 |
+
(self.args.refinement is None or len(self.args.refinement)==0):
|
| 250 |
+
continue
|
| 251 |
+
|
| 252 |
+
# upsample disparity map
|
| 253 |
+
if up_mask is None:
|
| 254 |
+
flow_up = upflow8(flow)
|
| 255 |
+
else:
|
| 256 |
+
flow_up, img_coord = self.upsample_flow(flow, up_mask)
|
| 257 |
+
flow_up = flow_up[:,:1]
|
| 258 |
+
flow_predictions.append(flow_up)
|
| 259 |
+
|
| 260 |
+
# second-stage in geometry estimation
|
| 261 |
+
geo_params = None
|
| 262 |
+
disparity = -flow[:,:1]
|
| 263 |
+
if self.args.geo_estimator is not None and len(self.args.geo_estimator)>0:
|
| 264 |
+
geo_params = self.geometry_builder(img_coord, -flow_up, disparity)
|
| 265 |
+
|
| 266 |
+
# disp_up = self.upsample_geo(up_mask, params=geo_params)
|
| 267 |
+
disp_up = self.upsample_geo(mask=None, mask_disp=up_mask_disp, params=geo_params)
|
| 268 |
+
params_list.append(geo_params)
|
| 269 |
+
disp_predictions.append(disp_up)
|
| 270 |
+
|
| 271 |
+
## curvature-aware propagation
|
| 272 |
+
disparity_refine = None
|
| 273 |
+
geo_params_refine = None
|
| 274 |
+
if self.args.refinement is not None and len(self.args.refinement)>0 and enable_refinement:
|
| 275 |
+
if itr>=self.args.refine_start_itr:
|
| 276 |
+
geo_params_refine = self.refine(geo_params, inp_list[0], confidence,
|
| 277 |
+
if_shift=(itr-self.args.refine_start_itr)%2>0)
|
| 278 |
+
coords1 = coords0 - geo_params_refine[:,:1]
|
| 279 |
+
disparity_refine = geo_params_refine[:,:1]
|
| 280 |
+
### update hidden state
|
| 281 |
+
if self.args.update_his:
|
| 282 |
+
net_list[0] = self.update_hist(net_list[0], -disparity_refine)
|
| 283 |
+
params_list_refine.append(geo_params_refine)
|
| 284 |
+
|
| 285 |
+
# upsample refinement
|
| 286 |
+
disp_up_refine = None
|
| 287 |
+
if geo_params_refine is not None:
|
| 288 |
+
# disp_up_refine = self.upsample_geo(up_mask, params=geo_params_refine)
|
| 289 |
+
disp_up_refine = self.upsample_geo(mask=None, mask_disp=up_mask_disp, params=geo_params_refine)
|
| 290 |
+
# disp_up_refine = disp_up_refine[:,:1]
|
| 291 |
+
disp_predictions_refine.append(disp_up_refine)
|
| 292 |
+
|
| 293 |
+
if test_mode:
|
| 294 |
+
if self.args.refinement is not None and len(self.args.refinement)>0 and enable_refinement:
|
| 295 |
+
return coords1 - coords0, flow_up_refine
|
| 296 |
+
return coords1 - coords0, flow_up
|
| 297 |
+
# return coords1 - coords0, -disp_up
|
| 298 |
+
|
| 299 |
+
if vis_mode:
|
| 300 |
+
return flow_predictions, disp_predictions, disp_predictions_refine, confidence_list
|
| 301 |
+
|
| 302 |
+
return flow_predictions, disp_predictions, disp_predictions_refine, confidence_list, params_list, params_list_refine
|
core/__init__.py
ADDED
|
File without changes
|
core/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (151 Bytes). View file
|
|
|
core/__pycache__/confidence.cpython-310.pyc
ADDED
|
Binary file (5.17 kB). View file
|
|
|
core/__pycache__/corr.cpython-310.pyc
ADDED
|
Binary file (9.64 kB). View file
|
|
|
core/__pycache__/extractor.cpython-310.pyc
ADDED
|
Binary file (7.14 kB). View file
|
|
|
core/__pycache__/extractor_depthany.cpython-310.pyc
ADDED
|
Binary file (6.43 kB). View file
|
|
|
core/__pycache__/fusion.cpython-310.pyc
ADDED
|
Binary file (5.16 kB). View file
|
|
|
core/__pycache__/geometry.cpython-310.pyc
ADDED
|
Binary file (5.86 kB). View file
|
|
|
core/__pycache__/raft_stereo_depthbeta_refine.cpython-310.pyc
ADDED
|
Binary file (7.77 kB). View file
|
|
|
core/__pycache__/update_disp.cpython-310.pyc
ADDED
|
Binary file (5.95 kB). View file
|
|
|
core/confidence.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import logging
|
| 4 |
+
import numpy as np
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class OffsetConfidence(nn.Module):
|
| 14 |
+
def __init__(self, args):
|
| 15 |
+
super(OffsetConfidence, self).__init__()
|
| 16 |
+
self.detach = args.detach_in_confidence
|
| 17 |
+
self.offset_memory_size = args.offset_memory_size
|
| 18 |
+
self.conv_fea = nn.Conv2d(256, 16, 3, padding=1)
|
| 19 |
+
self.conv_offset = nn.Conv2d(2*args.offset_memory_size, 16, 3, padding=1)
|
| 20 |
+
self.fusion = nn.Sequential(OrderedDict([
|
| 21 |
+
('conv1', nn.Conv2d(32, 8, 3, padding=1)),
|
| 22 |
+
('relu1', nn.LeakyReLU(inplace=True)),
|
| 23 |
+
('conv2', nn.Conv2d(8, 2, 3, padding=1)),
|
| 24 |
+
('relu2', nn.LeakyReLU(inplace=True)),
|
| 25 |
+
('conv3', nn.Conv2d(2, 1, 1, padding=0)),
|
| 26 |
+
]))
|
| 27 |
+
|
| 28 |
+
if "local_rank" not in args or args.local_rank==0 :
|
| 29 |
+
logging.info(f"OffsetConfidence: " + \
|
| 30 |
+
f"detach: {args.detach_in_confidence}")
|
| 31 |
+
|
| 32 |
+
def forward(self, fea, offset_memory):
|
| 33 |
+
if type(fea) is list:
|
| 34 |
+
fea = torch.cat(fea, dim=1)
|
| 35 |
+
context = self.conv_fea(fea.detach() if self.detach else fea)
|
| 36 |
+
offset_memory = torch.cat([offset.detach() if self.detach else offset for offset in offset_memory], dim=1)
|
| 37 |
+
confidence = self.conv_offset( -offset_memory )
|
| 38 |
+
confidence = self.fusion( torch.cat([confidence,context], dim=1) )
|
| 39 |
+
return confidence
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class MBConvBlockSimple(nn.Module):
|
| 44 |
+
def __init__(self, in_channels, out_channels, expand_ratio=1, kernel_size=3, stride=1, se_ratio=0.25):
|
| 45 |
+
super(MBConvBlockSimple, self).__init__()
|
| 46 |
+
|
| 47 |
+
self.has_se = se_ratio is not None and 0 < se_ratio <= 1
|
| 48 |
+
self.expand_ratio = expand_ratio
|
| 49 |
+
mid_channels = in_channels * expand_ratio
|
| 50 |
+
if expand_ratio != 1:
|
| 51 |
+
self.expand_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1, bias=False)
|
| 52 |
+
self.bn0 = nn.BatchNorm2d(mid_channels)
|
| 53 |
+
|
| 54 |
+
self.depthwise_conv = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride,
|
| 55 |
+
padding=kernel_size // 2, groups=mid_channels, bias=False)
|
| 56 |
+
self.bn1 = nn.BatchNorm2d(mid_channels)
|
| 57 |
+
|
| 58 |
+
if self.has_se:
|
| 59 |
+
se_channels = max(1, int(in_channels * se_ratio))
|
| 60 |
+
self.se_reduce = nn.Conv2d(mid_channels, se_channels, kernel_size=1)
|
| 61 |
+
self.se_expand = nn.Conv2d(se_channels, mid_channels, kernel_size=1)
|
| 62 |
+
|
| 63 |
+
self.project_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1, bias=False)
|
| 64 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 65 |
+
|
| 66 |
+
self.swish = nn.SiLU(inplace=True)
|
| 67 |
+
self.use_residual = (stride == 1 and in_channels == out_channels)
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
identity = x
|
| 71 |
+
if self.expand_ratio != 1:
|
| 72 |
+
x = self.swish(self.bn0(self.expand_conv(x)))
|
| 73 |
+
|
| 74 |
+
x = self.swish(self.bn1(self.depthwise_conv(x)))
|
| 75 |
+
|
| 76 |
+
if self.has_se:
|
| 77 |
+
se = F.adaptive_avg_pool2d(x, 1)
|
| 78 |
+
se = self.swish(self.se_reduce(se))
|
| 79 |
+
se = torch.sigmoid(self.se_expand(se))
|
| 80 |
+
x = x * se
|
| 81 |
+
|
| 82 |
+
x = self.bn2(self.project_conv(x))
|
| 83 |
+
|
| 84 |
+
if self.use_residual:
|
| 85 |
+
x = x + identity
|
| 86 |
+
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class EfficientNetB1SimpleEncoder(nn.Module):
|
| 91 |
+
def __init__(self, in_C=2):
|
| 92 |
+
super(EfficientNetB1SimpleEncoder, self).__init__()
|
| 93 |
+
|
| 94 |
+
self.pre_pro = nn.Sequential(
|
| 95 |
+
nn.Conv2d(in_C, 8, 3, padding=1),
|
| 96 |
+
nn.BatchNorm2d(8),
|
| 97 |
+
nn.SiLU(inplace=True),
|
| 98 |
+
nn.Conv2d(8, 8, 3, padding=1),
|
| 99 |
+
nn.BatchNorm2d(8),
|
| 100 |
+
nn.SiLU(inplace=True),
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Stem, first downsampling
|
| 104 |
+
self.stem = nn.Sequential(
|
| 105 |
+
nn.Conv2d(8, 32, kernel_size=3, stride=2, padding=1, bias=False),
|
| 106 |
+
nn.BatchNorm2d(32),
|
| 107 |
+
nn.SiLU(inplace=True)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# EfficientNet-B1 Layers Configuration
|
| 111 |
+
layers_config = [
|
| 112 |
+
(32, 16, 1, 3, 1, 1), # Stage 1 (no downsampling)
|
| 113 |
+
(16, 24, 6, 3, 2, 2), # Stage 2 (second downsampling)
|
| 114 |
+
(24, 40, 6, 5, 2, 2), # Stage 3 (third downsampling)
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
# Building EfficientNet-B1 stages
|
| 118 |
+
self.blocks = nn.ModuleList()
|
| 119 |
+
for in_channels, out_channels, expand_ratio, kernel_size, stride, repeats in layers_config:
|
| 120 |
+
block_layers = []
|
| 121 |
+
block_layers.append(MBConvBlockSimple(in_channels, out_channels, expand_ratio, kernel_size, stride))
|
| 122 |
+
for _ in range(repeats - 1):
|
| 123 |
+
block_layers.append(MBConvBlockSimple(out_channels, out_channels, expand_ratio, kernel_size, stride=1))
|
| 124 |
+
self.blocks.append(nn.Sequential(*block_layers))
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
features = []
|
| 128 |
+
x = self.pre_pro(x)
|
| 129 |
+
features.append(x) # Store features for skip connections
|
| 130 |
+
x = self.stem(x)
|
| 131 |
+
for block in self.blocks:
|
| 132 |
+
x = block(x)
|
| 133 |
+
features.append(x) # Store features for skip connections
|
| 134 |
+
return features
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class EfficientUNetSimple(nn.Module):
|
| 138 |
+
def __init__(self, num_classes=1):
|
| 139 |
+
super(EfficientUNetSimple, self).__init__()
|
| 140 |
+
|
| 141 |
+
# Encoder using EfficientNet-B1 with only three stages
|
| 142 |
+
self.encoder = EfficientNetB1SimpleEncoder()
|
| 143 |
+
|
| 144 |
+
# Decoder layers (Upsampling)
|
| 145 |
+
self.upconv3 = nn.Conv2d(40, 24, kernel_size=1)
|
| 146 |
+
self.up3 = nn.ConvTranspose2d(24, 24, kernel_size=2, stride=2)
|
| 147 |
+
|
| 148 |
+
self.upconv2 = nn.Conv2d(24, 16, kernel_size=1)
|
| 149 |
+
self.up2 = nn.ConvTranspose2d(16, 16, kernel_size=2, stride=2)
|
| 150 |
+
|
| 151 |
+
self.upconv1 = nn.Conv2d(16, 8, kernel_size=1)
|
| 152 |
+
self.up1 = nn.ConvTranspose2d(8, 8, kernel_size=2, stride=2)
|
| 153 |
+
|
| 154 |
+
# Final conv layer
|
| 155 |
+
self.final_conv = nn.Conv2d(8, num_classes, kernel_size=1)
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
# Encoder
|
| 159 |
+
features = self.encoder(x)
|
| 160 |
+
# print("-"*30, features[-1].shape, features[-2].shape, features[-3].shape, features[-4].shape)
|
| 161 |
+
|
| 162 |
+
# Decoder with skip connections
|
| 163 |
+
x = self.up3(self.upconv3(features[-1])) + features[-2] # 1/8 ~ 1/4
|
| 164 |
+
x = self.up2(self.upconv2(x)) + features[-3] # 1/4 ~ 1/2
|
| 165 |
+
x = self.up1(self.upconv1(x)) + features[-4] # 1/2 ~ 1
|
| 166 |
+
|
| 167 |
+
# Final output layer
|
| 168 |
+
x = self.final_conv(x)
|
| 169 |
+
return x
|
core/corr.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from core.utils.utils import bilinear_sampler
|
| 4 |
+
|
| 5 |
+
try:
|
| 6 |
+
import corr_sampler
|
| 7 |
+
except:
|
| 8 |
+
pass
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import alt_cuda_corr
|
| 12 |
+
except:
|
| 13 |
+
# alt_cuda_corr is not compiled
|
| 14 |
+
pass
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class CorrSampler(torch.autograd.Function):
|
| 18 |
+
@staticmethod
|
| 19 |
+
def forward(ctx, volume, coords, radius):
|
| 20 |
+
ctx.save_for_backward(volume,coords)
|
| 21 |
+
ctx.radius = radius
|
| 22 |
+
corr, = corr_sampler.forward(volume, coords, radius)
|
| 23 |
+
return corr
|
| 24 |
+
@staticmethod
|
| 25 |
+
def backward(ctx, grad_output):
|
| 26 |
+
volume, coords = ctx.saved_tensors
|
| 27 |
+
grad_output = grad_output.contiguous()
|
| 28 |
+
grad_volume, = corr_sampler.backward(volume, coords, grad_output, ctx.radius)
|
| 29 |
+
return grad_volume, None, None
|
| 30 |
+
|
| 31 |
+
class CorrBlockFast1D:
|
| 32 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 33 |
+
self.num_levels = num_levels
|
| 34 |
+
self.radius = radius
|
| 35 |
+
self.corr_pyramid = []
|
| 36 |
+
# all pairs correlation
|
| 37 |
+
corr = CorrBlockFast1D.corr(fmap1, fmap2)
|
| 38 |
+
batch, h1, w1, dim, w2 = corr.shape
|
| 39 |
+
corr = corr.reshape(batch*h1*w1, dim, 1, w2)
|
| 40 |
+
for i in range(self.num_levels):
|
| 41 |
+
self.corr_pyramid.append(corr.view(batch, h1, w1, -1, w2//2**i))
|
| 42 |
+
corr = F.avg_pool2d(corr, [1,2], stride=[1,2])
|
| 43 |
+
|
| 44 |
+
def __call__(self, coords):
|
| 45 |
+
out_pyramid = []
|
| 46 |
+
bz, _, ht, wd = coords.shape
|
| 47 |
+
coords = coords[:, [0]]
|
| 48 |
+
for i in range(self.num_levels):
|
| 49 |
+
corr = CorrSampler.apply(self.corr_pyramid[i].squeeze(3), coords/2**i, self.radius)
|
| 50 |
+
out_pyramid.append(corr.view(bz, -1, ht, wd))
|
| 51 |
+
return torch.cat(out_pyramid, dim=1)
|
| 52 |
+
|
| 53 |
+
@staticmethod
|
| 54 |
+
def corr(fmap1, fmap2):
|
| 55 |
+
B, D, H, W1 = fmap1.shape
|
| 56 |
+
_, _, _, W2 = fmap2.shape
|
| 57 |
+
fmap1 = fmap1.view(B, D, H, W1)
|
| 58 |
+
fmap2 = fmap2.view(B, D, H, W2)
|
| 59 |
+
corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2)
|
| 60 |
+
corr = corr.reshape(B, H, W1, 1, W2).contiguous()
|
| 61 |
+
return corr / torch.sqrt(torch.tensor(D).float())
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class PytorchAlternateCorrBlock1D:
|
| 65 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 66 |
+
self.num_levels = num_levels
|
| 67 |
+
self.radius = radius
|
| 68 |
+
self.corr_pyramid = []
|
| 69 |
+
self.fmap1 = fmap1
|
| 70 |
+
self.fmap2 = fmap2
|
| 71 |
+
|
| 72 |
+
def corr(self, fmap1, fmap2, coords):
|
| 73 |
+
B, D, H, W = fmap2.shape
|
| 74 |
+
# map grid coordinates to [-1,1]
|
| 75 |
+
xgrid, ygrid = coords.split([1,1], dim=-1)
|
| 76 |
+
xgrid = 2*xgrid/(W-1) - 1
|
| 77 |
+
ygrid = 2*ygrid/(H-1) - 1
|
| 78 |
+
|
| 79 |
+
grid = torch.cat([xgrid, ygrid], dim=-1)
|
| 80 |
+
output_corr = []
|
| 81 |
+
for grid_slice in grid.unbind(3):
|
| 82 |
+
fmapw_mini = F.grid_sample(fmap2, grid_slice, align_corners=True)
|
| 83 |
+
corr = torch.sum(fmapw_mini * fmap1, dim=1)
|
| 84 |
+
output_corr.append(corr)
|
| 85 |
+
corr = torch.stack(output_corr, dim=1).permute(0,2,3,1)
|
| 86 |
+
|
| 87 |
+
return corr / torch.sqrt(torch.tensor(D).float())
|
| 88 |
+
|
| 89 |
+
def __call__(self, coords):
|
| 90 |
+
r = self.radius
|
| 91 |
+
coords = coords.permute(0, 2, 3, 1)
|
| 92 |
+
batch, h1, w1, _ = coords.shape
|
| 93 |
+
fmap1 = self.fmap1
|
| 94 |
+
fmap2 = self.fmap2
|
| 95 |
+
out_pyramid = []
|
| 96 |
+
for i in range(self.num_levels):
|
| 97 |
+
dx = torch.zeros(1)
|
| 98 |
+
dy = torch.linspace(-r, r, 2*r+1)
|
| 99 |
+
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device)
|
| 100 |
+
centroid_lvl = coords.reshape(batch, h1, w1, 1, 2).clone()
|
| 101 |
+
centroid_lvl[...,0] = centroid_lvl[...,0] / 2**i
|
| 102 |
+
coords_lvl = centroid_lvl + delta.view(-1, 2)
|
| 103 |
+
corr = self.corr(fmap1, fmap2, coords_lvl)
|
| 104 |
+
fmap2 = F.avg_pool2d(fmap2, [1, 2], stride=[1, 2])
|
| 105 |
+
out_pyramid.append(corr)
|
| 106 |
+
out = torch.cat(out_pyramid, dim=-1)
|
| 107 |
+
return out.permute(0, 3, 1, 2).contiguous().float()
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class PytorchAlternateAbsCorrBlock1D:
|
| 111 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 112 |
+
self.num_levels = num_levels
|
| 113 |
+
self.radius = radius
|
| 114 |
+
self.corr_pyramid = []
|
| 115 |
+
self.fmap1 = fmap1
|
| 116 |
+
|
| 117 |
+
self.fmap2_pyramid = [fmap2]
|
| 118 |
+
for i in range(num_levels):
|
| 119 |
+
fmap2 = F.avg_pool2d(fmap2, [1, 2], stride=[1, 2])
|
| 120 |
+
self.fmap2_pyramid.append(fmap2)
|
| 121 |
+
|
| 122 |
+
def corr(self, fmap1, fmap2, coords):
|
| 123 |
+
B, C, H, W = fmap1.shape
|
| 124 |
+
# map grid coordinates to [-1,1]
|
| 125 |
+
xgrid, ygrid = coords.split([1,1], dim=-1)
|
| 126 |
+
xgrid = 2*xgrid/(W-1) - 1
|
| 127 |
+
ygrid = 2*ygrid/(H-1) - 1
|
| 128 |
+
|
| 129 |
+
grid = torch.cat([xgrid, ygrid], dim=-1)
|
| 130 |
+
|
| 131 |
+
disp_num = 2 * self.radius + 1
|
| 132 |
+
fmapw_mini = F.grid_sample(fmap2, grid.view(B, H, W*disp_num, 2), mode='bilinear',
|
| 133 |
+
padding_mode='zeros').view(B, C, H, W, disp_num) # (B, C, H, W, S)
|
| 134 |
+
corr = torch.sum(fmap1.unsqueeze(-1) * fmapw_mini, dim=1)
|
| 135 |
+
|
| 136 |
+
return corr / torch.sqrt(torch.tensor(C).float())
|
| 137 |
+
|
| 138 |
+
def __call__(self, coords):
|
| 139 |
+
print(f"当前显存消耗量: {torch.distributed.get_rank()} {torch.cuda.memory_allocated() / 1024 / 1024:.2f} MB")
|
| 140 |
+
|
| 141 |
+
# in case of only disparity used in coordinates
|
| 142 |
+
B, D, H, W = coords.shape
|
| 143 |
+
if D==1:
|
| 144 |
+
y_coord = torch.arange(H).unsqueeze(1).float().repeat(B, 1, 1, W).to(coords.device)
|
| 145 |
+
coords = torch.cat([coords,y_coord], dim=1)
|
| 146 |
+
|
| 147 |
+
r = self.radius
|
| 148 |
+
coords = coords.permute(0, 2, 3, 1)
|
| 149 |
+
batch, h1, w1, _ = coords.shape
|
| 150 |
+
|
| 151 |
+
fmap1 = self.fmap1
|
| 152 |
+
out_pyramid = []
|
| 153 |
+
for i in range(self.num_levels):
|
| 154 |
+
fmap2 = self.fmap2_pyramid[i]
|
| 155 |
+
|
| 156 |
+
dx = torch.zeros(1)
|
| 157 |
+
dy = torch.linspace(-r, r, 2*r+1)
|
| 158 |
+
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device)
|
| 159 |
+
centroid_lvl = coords.reshape(batch, h1, w1, 1, 2).clone()
|
| 160 |
+
centroid_lvl[...,0] = centroid_lvl[...,0] / 2**i
|
| 161 |
+
coords_lvl = centroid_lvl + delta.view(-1, 2)
|
| 162 |
+
|
| 163 |
+
corr = self.corr(fmap1, fmap2, coords_lvl)
|
| 164 |
+
out_pyramid.append(corr)
|
| 165 |
+
out = torch.cat(out_pyramid, dim=-1)
|
| 166 |
+
return out.permute(0, 3, 1, 2).contiguous().float()
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class CorrBlock1D:
|
| 170 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 171 |
+
self.num_levels = num_levels
|
| 172 |
+
self.radius = radius
|
| 173 |
+
self.corr_pyramid = []
|
| 174 |
+
|
| 175 |
+
# all pairs correlation
|
| 176 |
+
corr = CorrBlock1D.corr(fmap1, fmap2)
|
| 177 |
+
|
| 178 |
+
batch, h1, w1, _, w2 = corr.shape
|
| 179 |
+
corr = corr.reshape(batch*h1*w1, 1, 1, w2)
|
| 180 |
+
|
| 181 |
+
self.corr_pyramid.append(corr)
|
| 182 |
+
for i in range(self.num_levels):
|
| 183 |
+
corr = F.avg_pool2d(corr, [1,2], stride=[1,2])
|
| 184 |
+
self.corr_pyramid.append(corr)
|
| 185 |
+
|
| 186 |
+
def __call__(self, coords):
|
| 187 |
+
r = self.radius
|
| 188 |
+
coords = coords[:, :1].permute(0, 2, 3, 1)
|
| 189 |
+
batch, h1, w1, _ = coords.shape
|
| 190 |
+
|
| 191 |
+
# print(f"当前显存消耗量: {torch.distributed.get_rank()} {torch.cuda.memory_allocated() / 1024 / 1024:.2f} MB")
|
| 192 |
+
|
| 193 |
+
out_pyramid = []
|
| 194 |
+
for i in range(self.num_levels):
|
| 195 |
+
corr = self.corr_pyramid[i]
|
| 196 |
+
dx = torch.linspace(-r, r, 2*r+1)
|
| 197 |
+
dx = dx.view(2*r+1, 1).to(coords.device)
|
| 198 |
+
x0 = dx + coords.reshape(batch*h1*w1, 1, 1, 1) / 2**i
|
| 199 |
+
y0 = torch.zeros_like(x0)
|
| 200 |
+
|
| 201 |
+
coords_lvl = torch.cat([x0,y0], dim=-1)
|
| 202 |
+
corr = bilinear_sampler(corr, coords_lvl)
|
| 203 |
+
corr = corr.view(batch, h1, w1, -1)
|
| 204 |
+
out_pyramid.append(corr)
|
| 205 |
+
|
| 206 |
+
out = torch.cat(out_pyramid, dim=-1)
|
| 207 |
+
return out.permute(0, 3, 1, 2).contiguous().float()
|
| 208 |
+
|
| 209 |
+
@staticmethod
|
| 210 |
+
def corr(fmap1, fmap2):
|
| 211 |
+
B, D, H, W1 = fmap1.shape
|
| 212 |
+
_, _, _, W2 = fmap2.shape
|
| 213 |
+
fmap1 = fmap1.view(B, D, H, W1)
|
| 214 |
+
fmap2 = fmap2.view(B, D, H, W2)
|
| 215 |
+
corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2)
|
| 216 |
+
corr = corr.reshape(B, H, W1, 1, W2).contiguous()
|
| 217 |
+
return corr / torch.sqrt(torch.tensor(D).float())
|
| 218 |
+
|
| 219 |
+
class AbsCorrBlock1D:
|
| 220 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 221 |
+
self.num_levels = num_levels
|
| 222 |
+
self.radius = radius
|
| 223 |
+
self.abs_corr_matrix_pyramid = []
|
| 224 |
+
|
| 225 |
+
# all pairs correlation
|
| 226 |
+
abs_corr_matrix = AbsCorrBlock1D.abs_corr(fmap1, fmap2)
|
| 227 |
+
|
| 228 |
+
batch, h1, w1, _, w2 = abs_corr_matrix.shape
|
| 229 |
+
abs_corr_matrix = abs_corr_matrix.reshape(batch*h1*w1, 1, 1, w2)
|
| 230 |
+
|
| 231 |
+
self.abs_corr_matrix_pyramid.append(abs_corr_matrix)
|
| 232 |
+
for i in range(self.num_levels):
|
| 233 |
+
abs_corr_matrix = F.avg_pool2d(abs_corr_matrix, [1,2], stride=[1,2])
|
| 234 |
+
self.abs_corr_matrix_pyramid.append(abs_corr_matrix)
|
| 235 |
+
|
| 236 |
+
def __call__(self, coords):
|
| 237 |
+
r = self.radius
|
| 238 |
+
coords = coords[:, :1].permute(0, 2, 3, 1)
|
| 239 |
+
batch, h1, w1, _ = coords.shape
|
| 240 |
+
|
| 241 |
+
out_pyramid = []
|
| 242 |
+
for i in range(self.num_levels):
|
| 243 |
+
abs_corr_matrix = self.abs_corr_matrix_pyramid[i]
|
| 244 |
+
dx = torch.linspace(-r, r, 2*r+1)
|
| 245 |
+
dx = dx.view(2*r+1, 1).to(coords.device)
|
| 246 |
+
x0 = dx + coords.reshape(batch*h1*w1, 1, 1, 1) / 2**i
|
| 247 |
+
y0 = torch.zeros_like(x0)
|
| 248 |
+
|
| 249 |
+
coords_lvl = torch.cat([x0,y0], dim=-1)
|
| 250 |
+
abs_corr_matrix = bilinear_sampler(abs_corr_matrix, coords_lvl)
|
| 251 |
+
abs_corr_matrix = abs_corr_matrix.view(batch, h1, w1, -1)
|
| 252 |
+
out_pyramid.append(abs_corr_matrix)
|
| 253 |
+
|
| 254 |
+
out = torch.cat(out_pyramid, dim=-1)
|
| 255 |
+
return out.permute(0, 3, 1, 2).contiguous().float()
|
| 256 |
+
|
| 257 |
+
@staticmethod
|
| 258 |
+
def abs_corr(fmap1, fmap2):
|
| 259 |
+
"""fucntion: build the correlation matrix (not traditional cost volume) for each pixel in the same line.
|
| 260 |
+
args:
|
| 261 |
+
fmap1: feature maps from left view, B*C*H*W1;
|
| 262 |
+
fmap2: feature maps from right view, B*C*H*W2;
|
| 263 |
+
return:
|
| 264 |
+
the correlation matrix, B*H*W1*W2;
|
| 265 |
+
"""
|
| 266 |
+
B, D, H, W1 = fmap1.shape
|
| 267 |
+
_, _, _, W2 = fmap2.shape
|
| 268 |
+
|
| 269 |
+
# 计算 L1 匹配代价
|
| 270 |
+
# corr_matrix = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2)
|
| 271 |
+
# corr_matrix = torch.sum(torch.abs(fmap1.unsqueeze(-1) - fmap2.unsqueeze(-2)), dim=1) # shape (B, H, W1, W2)
|
| 272 |
+
corr_matrix = (fmap1.unsqueeze(-1) - fmap2.unsqueeze(-2)).abs_().sum(dim=1) # shape (B, H, W1, W2)
|
| 273 |
+
# corr_matrix = fmap1.sum(dim=1).unsqueeze(-1) - fmap2.sum(dim=1).unsqueeze(-2) # shape (B, H, W1, W2)
|
| 274 |
+
print("-"*10, " AbsCorrBlock1D: {} ".format(corr_matrix.shape), "-"*10)
|
| 275 |
+
print(f"当前显存消耗量: {torch.distributed.get_rank()} {torch.cuda.memory_allocated() / 1024 / 1024:.2f} MB")
|
| 276 |
+
|
| 277 |
+
corr_matrix = corr_matrix.reshape(B, H, W1, 1, W2).contiguous()
|
| 278 |
+
return corr_matrix / torch.sqrt(torch.tensor(D).float())
|
| 279 |
+
|
| 280 |
+
class AlternateCorrBlock:
|
| 281 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
| 282 |
+
raise NotImplementedError
|
| 283 |
+
self.num_levels = num_levels
|
| 284 |
+
self.radius = radius
|
| 285 |
+
|
| 286 |
+
self.pyramid = [(fmap1, fmap2)]
|
| 287 |
+
for i in range(self.num_levels):
|
| 288 |
+
fmap1 = F.avg_pool2d(fmap1, 2, stride=2)
|
| 289 |
+
fmap2 = F.avg_pool2d(fmap2, 2, stride=2)
|
| 290 |
+
self.pyramid.append((fmap1, fmap2))
|
| 291 |
+
|
| 292 |
+
def __call__(self, coords):
|
| 293 |
+
coords = coords.permute(0, 2, 3, 1)
|
| 294 |
+
B, H, W, _ = coords.shape
|
| 295 |
+
dim = self.pyramid[0][0].shape[1]
|
| 296 |
+
|
| 297 |
+
corr_list = []
|
| 298 |
+
for i in range(self.num_levels):
|
| 299 |
+
r = self.radius
|
| 300 |
+
fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous()
|
| 301 |
+
fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous()
|
| 302 |
+
|
| 303 |
+
coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous()
|
| 304 |
+
corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r)
|
| 305 |
+
corr_list.append(corr.squeeze(1))
|
| 306 |
+
|
| 307 |
+
corr = torch.stack(corr_list, dim=1)
|
| 308 |
+
corr = corr.reshape(B, -1, H, W)
|
| 309 |
+
return corr / torch.sqrt(torch.tensor(dim).float())
|
core/extractor.py
ADDED
|
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class ResidualBlock(nn.Module):
|
| 7 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
| 8 |
+
super(ResidualBlock, self).__init__()
|
| 9 |
+
|
| 10 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
| 11 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
| 12 |
+
self.relu = nn.ReLU(inplace=True)
|
| 13 |
+
|
| 14 |
+
num_groups = planes // 8
|
| 15 |
+
|
| 16 |
+
if norm_fn == 'group':
|
| 17 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
| 18 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
| 19 |
+
if not (stride == 1 and in_planes == planes):
|
| 20 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
| 21 |
+
|
| 22 |
+
elif norm_fn == 'batch':
|
| 23 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
| 24 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
| 25 |
+
if not (stride == 1 and in_planes == planes):
|
| 26 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
| 27 |
+
|
| 28 |
+
elif norm_fn == 'instance':
|
| 29 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
| 30 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
| 31 |
+
if not (stride == 1 and in_planes == planes):
|
| 32 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
| 33 |
+
|
| 34 |
+
elif norm_fn == 'none':
|
| 35 |
+
self.norm1 = nn.Sequential()
|
| 36 |
+
self.norm2 = nn.Sequential()
|
| 37 |
+
if not (stride == 1 and in_planes == planes):
|
| 38 |
+
self.norm3 = nn.Sequential()
|
| 39 |
+
|
| 40 |
+
if stride == 1 and in_planes == planes:
|
| 41 |
+
self.downsample = None
|
| 42 |
+
|
| 43 |
+
else:
|
| 44 |
+
self.downsample = nn.Sequential(
|
| 45 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
y = x
|
| 50 |
+
y = self.conv1(y)
|
| 51 |
+
y = self.norm1(y)
|
| 52 |
+
y = self.relu(y)
|
| 53 |
+
y = self.conv2(y)
|
| 54 |
+
y = self.norm2(y)
|
| 55 |
+
y = self.relu(y)
|
| 56 |
+
|
| 57 |
+
if self.downsample is not None:
|
| 58 |
+
x = self.downsample(x)
|
| 59 |
+
|
| 60 |
+
return self.relu(x+y)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class BottleneckBlock(nn.Module):
|
| 65 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
| 66 |
+
super(BottleneckBlock, self).__init__()
|
| 67 |
+
|
| 68 |
+
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
|
| 69 |
+
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
|
| 70 |
+
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
|
| 71 |
+
self.relu = nn.ReLU(inplace=True)
|
| 72 |
+
|
| 73 |
+
num_groups = planes // 8
|
| 74 |
+
|
| 75 |
+
if norm_fn == 'group':
|
| 76 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
| 77 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
| 78 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
| 79 |
+
if not stride == 1:
|
| 80 |
+
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
| 81 |
+
|
| 82 |
+
elif norm_fn == 'batch':
|
| 83 |
+
self.norm1 = nn.BatchNorm2d(planes//4)
|
| 84 |
+
self.norm2 = nn.BatchNorm2d(planes//4)
|
| 85 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
| 86 |
+
if not stride == 1:
|
| 87 |
+
self.norm4 = nn.BatchNorm2d(planes)
|
| 88 |
+
|
| 89 |
+
elif norm_fn == 'instance':
|
| 90 |
+
self.norm1 = nn.InstanceNorm2d(planes//4)
|
| 91 |
+
self.norm2 = nn.InstanceNorm2d(planes//4)
|
| 92 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
| 93 |
+
if not stride == 1:
|
| 94 |
+
self.norm4 = nn.InstanceNorm2d(planes)
|
| 95 |
+
|
| 96 |
+
elif norm_fn == 'none':
|
| 97 |
+
self.norm1 = nn.Sequential()
|
| 98 |
+
self.norm2 = nn.Sequential()
|
| 99 |
+
self.norm3 = nn.Sequential()
|
| 100 |
+
if not stride == 1:
|
| 101 |
+
self.norm4 = nn.Sequential()
|
| 102 |
+
|
| 103 |
+
if stride == 1:
|
| 104 |
+
self.downsample = None
|
| 105 |
+
|
| 106 |
+
else:
|
| 107 |
+
self.downsample = nn.Sequential(
|
| 108 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def forward(self, x):
|
| 112 |
+
y = x
|
| 113 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
| 114 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
| 115 |
+
y = self.relu(self.norm3(self.conv3(y)))
|
| 116 |
+
|
| 117 |
+
if self.downsample is not None:
|
| 118 |
+
x = self.downsample(x)
|
| 119 |
+
|
| 120 |
+
return self.relu(x+y)
|
| 121 |
+
|
| 122 |
+
class BasicEncoder(nn.Module):
|
| 123 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0, downsample=3):
|
| 124 |
+
super(BasicEncoder, self).__init__()
|
| 125 |
+
self.norm_fn = norm_fn
|
| 126 |
+
self.downsample = downsample
|
| 127 |
+
|
| 128 |
+
if self.norm_fn == 'group':
|
| 129 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
| 130 |
+
|
| 131 |
+
elif self.norm_fn == 'batch':
|
| 132 |
+
self.norm1 = nn.BatchNorm2d(64)
|
| 133 |
+
|
| 134 |
+
elif self.norm_fn == 'instance':
|
| 135 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
| 136 |
+
|
| 137 |
+
elif self.norm_fn == 'none':
|
| 138 |
+
self.norm1 = nn.Sequential()
|
| 139 |
+
|
| 140 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3)
|
| 141 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 142 |
+
|
| 143 |
+
self.in_planes = 64
|
| 144 |
+
self.layer1 = self._make_layer(64, stride=1)
|
| 145 |
+
self.layer2 = self._make_layer(96, stride=1 + (downsample > 1))
|
| 146 |
+
self.layer3 = self._make_layer(128, stride=1 + (downsample > 0))
|
| 147 |
+
|
| 148 |
+
# output convolution
|
| 149 |
+
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
|
| 150 |
+
|
| 151 |
+
self.dropout = None
|
| 152 |
+
if dropout > 0:
|
| 153 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
| 154 |
+
|
| 155 |
+
for m in self.modules():
|
| 156 |
+
if isinstance(m, nn.Conv2d):
|
| 157 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 158 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
| 159 |
+
if m.weight is not None:
|
| 160 |
+
nn.init.constant_(m.weight, 1)
|
| 161 |
+
if m.bias is not None:
|
| 162 |
+
nn.init.constant_(m.bias, 0)
|
| 163 |
+
|
| 164 |
+
def _make_layer(self, dim, stride=1):
|
| 165 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
| 166 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
| 167 |
+
layers = (layer1, layer2)
|
| 168 |
+
|
| 169 |
+
self.in_planes = dim
|
| 170 |
+
return nn.Sequential(*layers)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def forward(self, x, dual_inp=False):
|
| 174 |
+
|
| 175 |
+
# if input is list, combine batch dimension
|
| 176 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
| 177 |
+
if is_list:
|
| 178 |
+
batch_dim = x[0].shape[0]
|
| 179 |
+
x = torch.cat(x, dim=0)
|
| 180 |
+
|
| 181 |
+
x = self.conv1(x)
|
| 182 |
+
x = self.norm1(x)
|
| 183 |
+
x = self.relu1(x)
|
| 184 |
+
|
| 185 |
+
x = self.layer1(x)
|
| 186 |
+
x = self.layer2(x)
|
| 187 |
+
x = self.layer3(x)
|
| 188 |
+
|
| 189 |
+
x = self.conv2(x)
|
| 190 |
+
|
| 191 |
+
if self.training and self.dropout is not None:
|
| 192 |
+
x = self.dropout(x)
|
| 193 |
+
|
| 194 |
+
if is_list:
|
| 195 |
+
x = x.split(split_size=batch_dim, dim=0)
|
| 196 |
+
|
| 197 |
+
return x
|
| 198 |
+
|
| 199 |
+
class MultiBasicEncoder(nn.Module):
|
| 200 |
+
def __init__(self, output_dim=[128], norm_fn='batch', dropout=0.0, downsample=3):
|
| 201 |
+
super(MultiBasicEncoder, self).__init__()
|
| 202 |
+
self.norm_fn = norm_fn
|
| 203 |
+
self.downsample = downsample
|
| 204 |
+
|
| 205 |
+
if self.norm_fn == 'group':
|
| 206 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
| 207 |
+
|
| 208 |
+
elif self.norm_fn == 'batch':
|
| 209 |
+
self.norm1 = nn.BatchNorm2d(64)
|
| 210 |
+
|
| 211 |
+
elif self.norm_fn == 'instance':
|
| 212 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
| 213 |
+
|
| 214 |
+
elif self.norm_fn == 'none':
|
| 215 |
+
self.norm1 = nn.Sequential()
|
| 216 |
+
|
| 217 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=1 + (downsample > 2), padding=3)
|
| 218 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 219 |
+
|
| 220 |
+
self.in_planes = 64
|
| 221 |
+
self.layer1 = self._make_layer(64, stride=1)
|
| 222 |
+
self.layer2 = self._make_layer(96, stride=1 + (downsample > 1))
|
| 223 |
+
self.layer3 = self._make_layer(128, stride=1 + (downsample > 0))
|
| 224 |
+
self.layer4 = self._make_layer(128, stride=2)
|
| 225 |
+
self.layer5 = self._make_layer(128, stride=2)
|
| 226 |
+
|
| 227 |
+
output_list = []
|
| 228 |
+
for dim in output_dim:
|
| 229 |
+
conv_out = nn.Sequential(
|
| 230 |
+
ResidualBlock(128, 128, self.norm_fn, stride=1),
|
| 231 |
+
nn.Conv2d(128, dim[2], 3, padding=1))
|
| 232 |
+
output_list.append(conv_out)
|
| 233 |
+
|
| 234 |
+
self.outputs08 = nn.ModuleList(output_list)
|
| 235 |
+
|
| 236 |
+
output_list = []
|
| 237 |
+
for dim in output_dim:
|
| 238 |
+
conv_out = nn.Sequential(
|
| 239 |
+
ResidualBlock(128, 128, self.norm_fn, stride=1),
|
| 240 |
+
nn.Conv2d(128, dim[1], 3, padding=1))
|
| 241 |
+
output_list.append(conv_out)
|
| 242 |
+
|
| 243 |
+
self.outputs16 = nn.ModuleList(output_list)
|
| 244 |
+
|
| 245 |
+
output_list = []
|
| 246 |
+
for dim in output_dim:
|
| 247 |
+
conv_out = nn.Conv2d(128, dim[0], 3, padding=1)
|
| 248 |
+
output_list.append(conv_out)
|
| 249 |
+
|
| 250 |
+
self.outputs32 = nn.ModuleList(output_list)
|
| 251 |
+
|
| 252 |
+
if dropout > 0:
|
| 253 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
| 254 |
+
else:
|
| 255 |
+
self.dropout = None
|
| 256 |
+
|
| 257 |
+
for m in self.modules():
|
| 258 |
+
if isinstance(m, nn.Conv2d):
|
| 259 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 260 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
| 261 |
+
if m.weight is not None:
|
| 262 |
+
nn.init.constant_(m.weight, 1)
|
| 263 |
+
if m.bias is not None:
|
| 264 |
+
nn.init.constant_(m.bias, 0)
|
| 265 |
+
|
| 266 |
+
def _make_layer(self, dim, stride=1):
|
| 267 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
| 268 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
| 269 |
+
layers = (layer1, layer2)
|
| 270 |
+
|
| 271 |
+
self.in_planes = dim
|
| 272 |
+
return nn.Sequential(*layers)
|
| 273 |
+
|
| 274 |
+
def forward(self, x, dual_inp=False, num_layers=3):
|
| 275 |
+
|
| 276 |
+
x = self.conv1(x)
|
| 277 |
+
x = self.norm1(x)
|
| 278 |
+
x = self.relu1(x)
|
| 279 |
+
|
| 280 |
+
x = self.layer1(x)
|
| 281 |
+
x = self.layer2(x)
|
| 282 |
+
x = self.layer3(x)
|
| 283 |
+
if dual_inp:
|
| 284 |
+
v = x
|
| 285 |
+
x = x[:(x.shape[0]//2)]
|
| 286 |
+
|
| 287 |
+
outputs08 = [f(x) for f in self.outputs08]
|
| 288 |
+
if num_layers == 1:
|
| 289 |
+
return (outputs08, v) if dual_inp else (outputs08,)
|
| 290 |
+
|
| 291 |
+
y = self.layer4(x)
|
| 292 |
+
outputs16 = [f(y) for f in self.outputs16]
|
| 293 |
+
|
| 294 |
+
if num_layers == 2:
|
| 295 |
+
return (outputs08, outputs16, v) if dual_inp else (outputs08, outputs16)
|
| 296 |
+
|
| 297 |
+
z = self.layer5(y)
|
| 298 |
+
outputs32 = [f(z) for f in self.outputs32]
|
| 299 |
+
|
| 300 |
+
return (outputs08, outputs16, outputs32, v) if dual_inp else (outputs08, outputs16, outputs32)
|