import os import sys import logging import numpy as np from collections import OrderedDict logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s',) import torch import torch.nn as nn import torch.nn.functional as F def to_2tuple(x): if isinstance(x, tuple): return x if isinstance(x, list): return tuple(x) if isinstance(x, np.ndarray): return tuple(x) return (x,x) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ window_size = to_2tuple(window_size) B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ window_size = to_2tuple(window_size) B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__(self, dim_fea, dim_disp, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., pretrained_window_size=[0, 0]): super().__init__() self.dim_fea = dim_fea self.dim_disp = dim_disp self.window_size = to_2tuple(window_size) # Wh, Ww self.pretrained_window_size = to_2tuple(pretrained_window_size) self.num_heads = num_heads self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = torch.stack( torch.meshgrid([relative_coords_h, relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) else: relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( torch.abs(relative_coords_table) + 1.0) / np.log2(8) self.register_buffer("relative_coords_table", relative_coords_table) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qk = nn.Linear(dim_fea, dim_fea * 2, bias=False) self.v = nn.Linear(dim_disp, dim_disp, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(dim_fea)) self.v_bias = nn.Parameter(torch.zeros(dim_disp)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim_disp, dim_disp) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, guidance, shift_mask=None, reliability_mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C_x = x.shape qk_bias = None v_bias = None if self.q_bias is not None: qk_bias = torch.cat((self.q_bias, torch.zeros_like(self.q_bias, requires_grad=False))) v_bias = self.v_bias qk = F.linear(input=guidance, weight=self.qk.weight, bias=qk_bias) v = F.linear(input=x, weight=self.v.weight, bias=v_bias) qk = qk.reshape(B_, N, 2, self.num_heads, -1).permute(2, 0, 3, 1, 4) # (2, B_, nH, N, C_fea/nH) v = v.reshape(B_, N, 1, 1, -1).permute(2, 0, 3, 1, 4) # (1, B_, 1, N, C_x) q, k = qk[0], qk[1] # make torchscript happy (cannot use tensor as tuple) v = v.squeeze(0) # cosine attention attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) # (B_, nH, N, N) logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01, device=self.logit_scale.device))).exp() attn = attn * logit_scale relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) # (1, 2*Wh-1, 2*Ww-1, nH) relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attn = attn + relative_position_bias.unsqueeze(0) # (B_, nH, N, N) if shift_mask is not None: nW = shift_mask.shape[0] # (B=B_/nW, nW, nH, N, N) + (nW, N, N) + (B=B_/nW, nW, N) attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + \ shift_mask.unsqueeze(1).unsqueeze(0) +\ reliability_mask.view(B_ // nW, nW, N).unsqueeze(2).unsqueeze(-2) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).mean(dim=1) # (B_, N, C_x) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_window_size (int): Window size in pre-training. """ def __init__(self, args, dim_fea, dim_disp, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): super().__init__() self.dim_fea = dim_fea self.dim_disp = dim_disp self.num_heads = num_heads self.window_size = to_2tuple(window_size) self.shift_size = to_2tuple(shift_size) self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" self.norm1 = norm_layer(dim_disp) self.attn = WindowAttention( dim_fea, dim_disp, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=to_2tuple(pretrained_window_size)) assert drop_path<=0, "no support for DropPath" # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.drop_path = nn.Identity() self.norm2 = norm_layer(dim_disp) mlp_hidden_dim = int(dim_disp * mlp_ratio) self.mlp = Mlp(in_features=dim_disp, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.apply(self._init_weights) def get_shift_mask(self, H, W, device): if self.shift_size[0]>0 or self.shift_size[1]>0: # calculate attention mask for SW-MSA img_mask = torch.zeros((1, H, W, 1), device=device) # 1 H W 1 first_end = -self.window_size[0] if self.window_size[0]>0 else None second_end = -self.shift_size[0] if self.shift_size[0]>0 else None h_slices = (slice(0, first_end), slice(first_end, second_end), slice(second_end, None)) first_end = -self.window_size[1] if self.window_size[1]>0 else None second_end = -self.shift_size[1] if self.shift_size[1]>0 else None w_slices = (slice(0, first_end), slice(first_end, second_end), slice(second_end, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size[0] * self.window_size[1]) shift_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) shift_mask = shift_mask.masked_fill(shift_mask != 0, float(-100.0)).masked_fill(shift_mask == 0, float(0.0)) else: shift_mask = None return shift_mask def forward(self, x, guidance, reliability): # padding _,_,H,W = x.shape wh,ww = to_2tuple(self.window_size) padding_H = int(np.ceil(H/wh)*wh-H) padding_W = int(np.ceil(W/ww)*ww-W) x = F.pad(x,(padding_W,0,padding_H,0),mode="replicate") guidance = F.pad(guidance,(padding_W,0,padding_H,0),mode="replicate") reliability = F.pad(reliability,(padding_W,0,padding_H,0),mode="replicate") x = x.permute((0,2,3,1)) guidance = guidance.permute((0,2,3,1)) reliability = reliability.permute((0,2,3,1)) B, H, W, C_fea = guidance.shape _, _, _, C_x = x.shape # guidance = guidance.flatten(2).transpose(1, 2) # (B,H*W,C_fea) # x = x.flatten(2).transpose(1, 2) # (B,H,W,C_x) shift_mask = self.get_shift_mask(H,W, x.device) shortcut = x # x = x.view(B, H, W, C) # cyclic shift if self.shift_size[0]>0 or self.shift_size[1]>0: shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) # (80, 180) shifted_guidance = torch.roll(guidance, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) shifted_reliability = torch.roll(reliability, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) else: shifted_x = x shifted_guidance = guidance shifted_reliability = reliability # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C_x x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C_x) # nW*B, window_size*window_size, C_x guidance_windows = window_partition(shifted_guidance, self.window_size) # nW*B, window_size, window_size, C_fea guidance_windows = guidance_windows.view(-1, self.window_size[0] * self.window_size[1], C_fea) # nW*B, window_size*window_size, C_fea reliability_windows = window_partition(shifted_reliability, self.window_size) # nW*B, window_size, window_size, 1 reliability_windows = reliability_windows.view(-1, self.window_size[0] * self.window_size[1]) # nW*B, window_size*window_size # W-MSA/SW-MSA attn_windows = self.attn(x_windows, guidance_windows, shift_mask=shift_mask, reliability_mask=reliability_windows) # nW*B, window_size*window_size, C_x # merge windows attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C_x) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size[0]>0 or self.shift_size[1]>0: x = torch.roll(shifted_x, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)) else: x = shifted_x x = x.view(B, H, W, C_x) # x = shortcut + self.drop_path(self.norm1(x)) # FFN # x = x + self.drop_path(self.norm2(self.mlp(x))) # x = shortcut + self.drop_path(self.norm2(self.mlp(x))) # x = shortcut + self.mlp(x) x = shortcut + self.mlp(x)*(-shifted_reliability/100) x = x.view(B,H,W,C_x).permute((0,3,1,2)) # unpadding x = x[:,:,padding_H:,padding_W:] return x def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) class Refinement(nn.Module): def __init__(self, args, in_chans, dim_fea, dim_disp): super(Refinement, self).__init__() self.args = args self.detach = args.detach_in_refinement self.window_size = to_2tuple(args.refine_win_size) self.shift_size = (self.window_size[0]//2, self.window_size[1]//2) self.patch_embed = nn.Conv2d(in_chans, dim_fea, kernel_size=3, stride=1, padding=1) self.propagation_1 = SwinTransformerBlock(args, dim_fea, dim_disp, self.args.num_heads, window_size=self.window_size, shift_size=0,) self.propagation_2 = SwinTransformerBlock(args, dim_fea, dim_disp, self.args.num_heads, window_size=self.window_size, shift_size=self.shift_size,) if self.args.split_win: rev_win_size = [self.window_size[1], self.window_size[0]] rev_shift_size = [self.shift_size[1], self.shift_size[0]] self.propagation_1_2 = SwinTransformerBlock(args, dim_fea, dim_disp, self.args.num_heads, window_size=rev_win_size, shift_size=0,) self.propagation_2_2 = SwinTransformerBlock(args, dim_fea, dim_disp, self.args.num_heads, window_size=rev_win_size, shift_size=rev_shift_size,) def forward(self, geo_params, fea, confidence=None, if_shift=False): if type(fea) is list: fea = torch.cat(fea, dim=1) guidance = self.patch_embed(fea.detach() if self.detach else fea) if confidence is not None : uncertainty = F.sigmoid(confidence.detach()) uncertainty = uncertainty.masked_fill(uncertainty>self.args.U_thold, float(-100.0)).masked_fill(uncertainty<=self.args.U_thold, float(0.0)) reliability = uncertainty.detach() else: reliability = None if not if_shift: geo_params_refine = self.propagation_1(geo_params.detach(), guidance, reliability) if self.args.split_win: geo_params_refine = self.propagation_1_2(geo_params_refine, guidance, reliability) else: geo_params_refine = self.propagation_2(geo_params.detach(), guidance, reliability) if self.args.split_win: geo_params_refine = self.propagation_2_2(geo_params_refine, guidance, reliability) return geo_params_refine class UpdateHistory(nn.Module): def __init__(self, args, in_chans1, in_chans2): super(UpdateHistory, self).__init__() self.conv = nn.Conv2d(in_chans2, in_chans2, kernel_size=1, stride=1, padding=0) self.update = nn.Sequential(nn.Conv2d(in_chans1+in_chans2, in_chans1, kernel_size=3, stride=1, padding=1),) def forward(self, his, disp): hist_update = self.update( torch.cat([his,self.conv(disp)], dim=1) ) return hist_update