Spaces:
Runtime error
Runtime error
| import torch | |
| import streamlit as st | |
| from transformers import AutoTokenizer, OPTForCausalLM | |
| def load_model(): | |
| tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-30b") | |
| model = OPTForCausalLM.from_pretrained("facebook/galactica-30b", device_map='auto', low_cpu_mem_usage=True, torch_dtype=torch.float16) | |
| model.gradient_checkpointing_enable() | |
| return tokenizer, model | |
| st.set_page_config( | |
| page_title='BioML-SVM', | |
| layout="wide" | |
| ) | |
| with st.spinner("Loading Models and Tokens..."): | |
| tokenizer, model = load_model() | |
| with st.form(key='my_form'): | |
| col1, col2 = st.columns([10, 1]) | |
| text_input = col1.text_input(label='Enter the amino sequence') | |
| with col2: | |
| st.text('') | |
| st.text('') | |
| submit_button = st.form_submit_button(label='Submit') | |
| if submit_button: | |
| st.session_state['result_done'] = False | |
| # input_text = "[START_AMINO]GHMQSITAGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVRWTDGQVYGAKFVASHPIQMYQVEFEDGSQLVVKRDDVYTLDEELP[END_AMINO]" | |
| with st.spinner('Generating...'): | |
| # formatted_text = f"[START_AMINO]{text_input}[END_AMINO]" | |
| # formatted_text = f"Here is the sequence: [START_AMINO]{text_input}[END_AMINO]" | |
| formatted_text = f"{text_input}" | |
| input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda") | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=500 | |
| ) | |
| result = tokenizer.decode(outputs[0]).replace(formatted_text, "") | |
| st.markdown(result) | |
| if 'result_done' not in st.session_state or not st.session_state.result_done: | |
| st.session_state['result_done'] = True | |
| st.session_state['previous_state'] = result | |
| else: | |
| if 'result_done' in st.session_state and st.session_state.result_done: | |
| st.markdown(st.session_state.previous_state) | |
| if 'result_done' in st.session_state and st.session_state.result_done: | |
| with st.form(key='ask_more'): | |
| col1, col2 = st.columns([10, 1]) | |
| text_input = col1.text_input(label='Ask more question') | |
| with col2: | |
| st.text('') | |
| st.text('') | |
| submit_button = st.form_submit_button(label='Submit') | |
| if submit_button: | |
| with st.spinner('Generating...'): | |
| # formatted_text = f"[START_AMINO]{text_input}[END_AMINO]" | |
| formatted_text = f"Q:{text_input}\n\nA:\n\n" | |
| input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda") | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| max_length=len(formatted_text) + 500, | |
| do_sample=True, | |
| top_k=40, | |
| num_beams=1, | |
| num_return_sequences=1 | |
| ) | |
| result = tokenizer.decode(outputs[0]).replace(formatted_text, "") | |
| st.markdown(result) | |