Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 6 |
+
from code_flores_latest import flores_codes_latest
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load_models():
|
| 10 |
+
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M'}
|
| 11 |
+
model_dict = {}
|
| 12 |
+
for call_name, real_name in model_name_dict.items():
|
| 13 |
+
print('\tLoading model: %s' % call_name)
|
| 14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
| 16 |
+
model_dict[call_name + '_model'] = model
|
| 17 |
+
model_dict[call_name + '_tokenizer'] = tokenizer
|
| 18 |
+
return model_dict
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def translation(source, target, text):
|
| 22 |
+
model_name = 'nllb-distilled-600M'
|
| 23 |
+
source_code = flores_codes_latest.get(source, None)
|
| 24 |
+
target_code = flores_codes_latest.get(target, None)
|
| 25 |
+
if not source_code or not target_code:
|
| 26 |
+
return "<p>Error: Language code not found.</p>"
|
| 27 |
+
|
| 28 |
+
model = model_dict[model_name + '_model']
|
| 29 |
+
tokenizer = model_dict[model_name + '_tokenizer']
|
| 30 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source_code, tgt_lang=target_code)
|
| 31 |
+
output = translator(text, max_length=400)
|
| 32 |
+
output_text = output[0]['translation_text']
|
| 33 |
+
|
| 34 |
+
formatted_output = f"<p><strong>Original Text ({source}):</strong><br>{text}</p><p><strong>Translated Text ({target}):</strong> <span style='color: red;'>{output_text}</span></p>"
|
| 35 |
+
return formatted_output
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == '__main__':
|
| 39 |
+
print('\tInitializing models')
|
| 40 |
+
model_dict = load_models()
|
| 41 |
+
lang_names = list(flores_codes_latest.keys())
|
| 42 |
+
source_dropdown = gr.Dropdown(lang_names, label='Source', allow_custom_value=True)
|
| 43 |
+
target_dropdown = gr.Dropdown(lang_names, label='Target', allow_custom_value=True)
|
| 44 |
+
textbox = gr.Textbox(lines=5, label="Input text")
|
| 45 |
+
title = "nllb-distilled-600M - Example implementation"
|
| 46 |
+
|
| 47 |
+
description = f"Nots: please note that not all translations are accurate, and some models codes are not accepted . "
|
| 48 |
+
|
| 49 |
+
initial_output_value = "<p>Translation results will appear here.</p>"
|
| 50 |
+
output_html = gr.HTML(label="Translation Result", value=initial_output_value)
|
| 51 |
+
|
| 52 |
+
iface = gr.Interface(fn=translation, inputs=[source_dropdown, target_dropdown, textbox], outputs=output_html,
|
| 53 |
+
title=title, description=description)
|
| 54 |
+
iface.launch()
|
| 55 |
+
|