Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
+
import numpy as np
|
| 6 |
+
import random
|
| 7 |
+
|
| 8 |
+
if torch.cuda.is_available():
|
| 9 |
+
device = torch.device("cuda")
|
| 10 |
+
else:
|
| 11 |
+
device = torch.device("cpu")
|
| 12 |
+
|
| 13 |
+
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
|
| 14 |
+
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
| 15 |
+
|
| 16 |
+
st.title("Zero-Shot Object Detection with OWLv2")
|
| 17 |
+
|
| 18 |
+
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
| 19 |
+
text_queries = st.text_input("Enter text queries (comma-separated):")
|
| 20 |
+
score_threshold = st.slider("Score Threshold", min_value=0.0, max_value=1.0, value=0.1, step=0.01)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def query_image(img, text_queries, score_threshold):
|
| 24 |
+
try:
|
| 25 |
+
img = Image.open(img).convert("RGB")
|
| 26 |
+
img_np = np.array(img)
|
| 27 |
+
text_queries = text_queries.split(",")
|
| 28 |
+
|
| 29 |
+
size = max(img_np.shape[:2])
|
| 30 |
+
target_sizes = torch.Tensor([[size, size]])
|
| 31 |
+
inputs = processor(text=text_queries, images=img_np, return_tensors="pt").to(device)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(**inputs)
|
| 35 |
+
|
| 36 |
+
outputs.logits = outputs.logits.cpu()
|
| 37 |
+
outputs.pred_boxes = outputs.pred_boxes.cpu()
|
| 38 |
+
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
| 39 |
+
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
| 40 |
+
|
| 41 |
+
result_labels = []
|
| 42 |
+
for box, score, label in zip(boxes, scores, labels):
|
| 43 |
+
box = [int(i) for i in box.tolist()]
|
| 44 |
+
if score < score_threshold:
|
| 45 |
+
continue
|
| 46 |
+
result_labels.append((box, text_queries[label.item()]))
|
| 47 |
+
|
| 48 |
+
return img, result_labels
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
st.error(f"Error performing object detection: {e}")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
if uploaded_image is not None:
|
| 55 |
+
annotated_image, detected_objects = query_image(uploaded_image, text_queries, score_threshold)
|
| 56 |
+
if annotated_image:
|
| 57 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 58 |
+
font = ImageFont.load_default()
|
| 59 |
+
for box, label in detected_objects:
|
| 60 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
| 61 |
+
draw.rectangle(box, outline=color, width=3)
|
| 62 |
+
draw.text((box[0], box[1]), label, fill="black", font=font)
|
| 63 |
+
st.image(annotated_image, caption="Annotated Image", use_column_width=True)
|
| 64 |
+
|