Spaces:
Runtime error
Runtime error
File size: 53,729 Bytes
2f3e169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 |
import logging
import gc
import json
import time # Add time module
from datetime import timedelta
from typing import List, Optional, Tuple, Type, TypeVar, Union, Dict
import torch
import torch.nn.functional as F
import torch.distributions as dists
import transformers
from transformers import AutoTokenizer
from peft import LoraConfig, get_peft_model
from accelerate import (
Accelerator,
InitProcessGroupKwargs,
)
from datasets import Dataset
from packaging import version
from tqdm import tqdm
from peft import PeftConfig, PeftModel
import numpy as np # Add numpy import
import os
import jinja2
# Import LLaDA model related modules
from model_cache.llada.modeling_llada import LLaDAModelLM
from model_cache.llada.configuration_llada import LLaDAConfig
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import get_dtype
from lm_eval.__main__ import cli_evaluate
eval_logger = logging.getLogger(__name__)
T = TypeVar("T", bound="TemplateLM")
import random
def set_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def create_full_block_attention_mask(prompt_length, max_length, block_size, device=None, dtype=None):
"""
Creates a complete attention mask for the entire sequence with block-based causal attention.
Args:
prompt_length: Length of the prompt (first irregular block)
max_length: Maximum total sequence length
block_size: Size of each regular block
device: Device to create tensor on
dtype: Data type for the attention mask
Returns:
attention_mask: Tensor of shape [1, 1, max_length, max_length]
"""
# Use the provided dtype or default to bfloat16
if dtype is None:
dtype = torch.bfloat16
# Initialize mask with -inf (no attention)
attention_mask = torch.full((1, 1, max_length, max_length), -torch.inf, device=device, dtype=dtype)
# Block 0: Prompt (can see itself)
attention_mask[:, :, :prompt_length, :prompt_length] = 0
# Calculate the number of regular blocks after prompt
remaining_length = max_length - prompt_length
num_blocks = (remaining_length + block_size - 1) // block_size
# Process each regular block
for b in range(num_blocks):
block_start = prompt_length + b * block_size
block_end = min(prompt_length + (b + 1) * block_size, max_length)
# Current block can see the prompt
attention_mask[:, :, block_start:block_end, :prompt_length] = 0
# Current block can see all previous regular blocks
for prev_b in range(b):
prev_start = prompt_length + prev_b * block_size
prev_end = min(prompt_length + (prev_b + 1) * block_size, max_length)
attention_mask[:, :, block_start:block_end, prev_start:prev_end] = 0
# Current block can see itself (full attention within block)
attention_mask[:, :, block_start:block_end, block_start:block_end] = 0
return attention_mask
def extract_attention_mask(full_mask, start_pos, input_length, cache_length):
"""
Extract the relevant portion of attention mask for current forward pass.
Args:
full_mask: Complete attention mask [1, 1, max_length, max_length]
start_pos: Starting position in the full sequence
input_length: Length of current input sequence
cache_length: Length of cached sequence
Returns:
attention_mask: Extracted mask [1, 1, input_length, cache_length + input_length]
"""
end_pos = start_pos + input_length
total_length = cache_length + input_length
# Extract the relevant rows (current input positions)
# and columns (cache + current input positions)
extracted_mask = torch.full((1, 1, input_length, total_length), -torch.inf,
device=full_mask.device, dtype=full_mask.dtype)
# Copy cache columns (0 to cache_length in the extracted mask corresponds to 0 to cache_length in full mask)
extracted_mask[:, :, :, :cache_length] = full_mask[:, :, start_pos:end_pos, :cache_length]
# Copy current input columns
extracted_mask[:, :, :, cache_length:] = full_mask[:, :, start_pos:end_pos, start_pos:end_pos]
return extracted_mask
def build_custom_float_attention_mask(input_ids, prompt_length, block_size, device=None, dtype=None):
"""
Builds a custom float attention mask with block-based causal attention.
Args:
input_ids: Input token IDs.
prompt_length: Length of the prompt for each sequence in the batch.
block_size: Size of each regular block.
device: Device to create tensor on.
dtype: Data type for the attention mask.
Returns:
attn_mask: Tensor of shape [B, 1, seq_len, seq_len].
"""
B, seq_len = input_ids.shape
# Use the provided dtype or default to float32
if dtype is None:
dtype = torch.float32
# Initialize to all -inf
attn_mask = torch.full((B, 1, seq_len, seq_len), float('-inf'), dtype=dtype, device=device)
# 1. Prompt section: each token can attend to the entire prompt
for i in range(B):
attn_mask[i, :, :, :prompt_length[i]] = 0.0 # Allow all tokens to see the prompt
# 2. Block division: divide blocks starting from prompt_length
num_blocks = (seq_len - prompt_length[i] + block_size - 1) // block_size
for b in range(num_blocks):
block_start = prompt_length[i] + b * block_size
block_end = min(block_start + block_size, seq_len)
# Full attention within the block
attn_mask[i, :, block_start:block_end, block_start:block_end] = 0.0
# Causal attention between blocks (can only see previous blocks)
for prev_b in range(b):
prev_start = prompt_length[i] + prev_b * block_size
prev_end = min(prev_start + block_size, seq_len)
# Current block can see previous blocks
attn_mask[i, :, block_start:block_end, prev_start:prev_end] = 0.0
return attn_mask
def top_p_logits(logits, top_p=None):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
if temperature > 0:
logits = logits / temperature
if top_p is not None and top_p < 1:
logits = top_p_logits(logits, top_p)
if top_k is not None:
logits = top_k_logits(logits, top_k)
probs = torch.softmax(logits, dim=-1)
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
initial_confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except:
initial_confidence, x0 = probs.max(dim=-1)
else:
initial_confidence, x0 = probs.max(dim=-1)
# Save initial confidence
confidence = initial_confidence.clone()
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Extract top1 and top2 probabilities
top1_probs = sorted_probs[:, 0]
top2_probs = sorted_probs[:, 1]
# Calculate confidence as top1 - top2
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1)
return confidence, x0, initial_confidence
@register_model("dream_lora")
class DreamLoRA(TemplateLM):
def __init__(
self,
pretrained: Union[str, transformers.PreTrainedModel],
lora_path: str,
batch_size: Optional[Union[int, str]] = 1,
device: Optional[str] = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
max_new_tokens: Optional[int] = 128,
max_length: Optional[int] = 4096, # Updated to match example code
add_bos_token: Optional[bool] = False,
nll_type: Optional[str] = "mc",
log_type: Optional[str] = "ftb",
mc_num: Optional[int] = 128,
classifier_free_guidance: Optional[float] = 1.0,
sampling_eps: Optional[float] = 1e-3,
diffusion_steps: Optional[int] = 128,
trust_remote_code: Optional[bool] = True,
parallelize: Optional[bool] = False,
autogptq: Optional[Union[bool, str]] = False,
temperature: Optional[float] = 0.2, # Updated default value
top_p: Optional[float] = None, # Updated default value
top_k: Optional[float] = None,
alg: Optional[str] = "entropy",
alg_temp: Optional[float] = 0.0,
escape_until: Optional[bool] = False,
block_size: Optional[int] = 4, # Updated to match example code
mask_token_id: Optional[int] = 126336, # Added mask_token_id parameter
block_add_threshold: Optional[float] = 0.5, # Added block_add_threshold parameter
decoded_token_threshold: Optional[float] = 0.9, # Added decoded token threshold parameter
skip_threshold: Optional[float] = 1.0, # Added skip_threshold parameter
sampling_strategy: Optional[str] = "default", # Added sampling strategy parameter
save_dir: Optional[str] = None, # Added save directory parameter
show_speed: Optional[bool] = True, # Added speed statistics parameter
**kwargs,
) -> None:
super().__init__()
# prepare for parallelism
assert isinstance(device, str)
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int, str))
gpus = torch.cuda.device_count()
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
if accelerator.num_processes > 1:
self.accelerator = accelerator
if "npu" in accelerator.device.type:
gpus = torch.npu.device_count()
# using one process with no model parallelism
if not (parallelize or accelerator.num_processes > 1):
# use user-passed device
device_list = set(
["cuda", "cpu"]
+ [f"cuda:{i}" for i in range(gpus)]
+ ["mps", "mps:0"]
+ [f"npu:{i}" for i in range(gpus)]
)
if device and device in device_list:
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
if device in ("mps", "mps:0") and version.parse(
torch.__version__
) < version.parse("2.1"):
raise RuntimeError(
f"mps requires torch >= 2.1. You have {torch.__version__}"
)
else:
eval_logger.info("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
else: # Parallelism managed by accelerate
if device != "cuda":
eval_logger.info(
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
)
# TODO: include in warning that `load_in_8bit` etc. affect this too
self._device = (
self.accelerator.device
if hasattr(self, "accelerator")
else torch.device(device)
)
self.batch_size_per_gpu = batch_size
if isinstance(batch_size, str):
self.batch_size_per_gpu = int(batch_size)
# Save LoRA path and block_size
self.lora_path = lora_path
self.block_size = block_size
self.block_add_threshold = block_add_threshold # Added block_add_threshold attribute
self.skip_threshold = skip_threshold # Added skip_threshold attribute
self.sampling_strategy = sampling_strategy # Save sampling strategy parameter
self.decoded_token_threshold = decoded_token_threshold # Added decoded token threshold attribute
# Save target_dtype for later use
self.target_dtype = get_dtype(dtype)
self._create_model_and_tokenizer(pretrained, dtype, trust_remote_code)
if isinstance(pretrained, str):
if gpus >= 1 or str(self.device) == "mps":
# TODO: can remove this whole snippet except in the mps case, perhaps?
if not (parallelize or autogptq or hasattr(self, "accelerator")):
# place model onto device requested manually,
# if not using HF Accelerate or device_map
# or any other option that preloads model onto device
try:
self.model.to(self.device)
except ValueError:
eval_logger.debug(
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
)
# multigpu data-parallel support when launched with accelerate
if gpus > 1:
if accelerator.num_processes > 1:
if parallelize:
eval_logger.warning(
"You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
)
elif gpus > accelerator.num_processes:
eval_logger.warning(
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
"If you would like to use data parallelism, please launch the script "
"with 'accelerate launch *script*'. "
f"Current run will proceed with {accelerator.num_processes} devices."
)
if self.accelerator.is_local_main_process:
eval_logger.info(
f"Using {gpus} devices with data parallelism"
)
self._device = torch.device(f"{accelerator.device}")
self.accelerator = accelerator
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
# if we aren't launching via accelerate, ditch
self._rank = 0
self._world_size = 1
else:
# if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
eval_logger.warning(
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
)
self._rank = 0
self._world_size = 1
self.max_length = max_length
self.add_bos_token = add_bos_token
# generation params
self.max_new_tokens = max_new_tokens
self.diffusion_steps = diffusion_steps
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alg = alg
self.alg_temp = alg_temp
self.escape_until = escape_until
self.block_size = block_size
self.mask_token_id = mask_token_id
# loglikelihood params
self.nll_type = nll_type
self.log_type = log_type
self.mc_num = mc_num
self.classifier_free_guidance = classifier_free_guidance
self.sampling_eps = sampling_eps
# Add backend attribute, consistent with LLaDA.py
self.backend = "causal"
# Add truncation attribute, consistent with LLaDA.py
self.truncation = False
self.save_dir = save_dir
self.show_speed = show_speed
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def _create_model_and_tokenizer(self, pretrained, dtype, trust_remote_code):
# Get correct data type
target_dtype = get_dtype(dtype)
# Load LLaDA model and configuration
config = LLaDAConfig.from_pretrained(pretrained)
self.model = LLaDAModelLM.from_pretrained(
pretrained,
config=config,
torch_dtype=target_dtype,
trust_remote_code=False,
).eval()
# Load LoRA configuration and model
peft_config = PeftConfig.from_pretrained(self.lora_path)
self.model = PeftModel.from_pretrained(self.model, self.lora_path)
# Convert data type only when target_dtype is not None and not "auto"
if target_dtype is not None and target_dtype != "auto":
self.model = self.model.to(target_dtype)
# Move to specified device
self.model = self.model.to(self.device)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
pretrained, trust_remote_code=trust_remote_code
)
def tok_encode(
self, string: str, left_truncate_len=None, add_special_tokens=None
) -> List[int]:
""" """
# default for None - empty dict, use predefined tokenizer param
# used for all models except for CausalLM or predefined value
special_tokens_kwargs = {}
# by default for CausalLM - false or self.add_bos_token is set
if add_special_tokens is None:
if self.backend == "causal":
special_tokens_kwargs = {
"add_special_tokens": False or self.add_bos_token
}
# otherwise the method explicitly defines the value
else:
special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(
self,
strings: List[str],
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
add_special_tokens = {}
if self.backend == "causal":
add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
encoding = self.tokenizer(
strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
**add_special_tokens,
)
if left_truncate_len:
original_lengths = encoding["input_ids"].size(1)
if original_lengths > left_truncate_len:
eval_logger.warn(
f"Left truncation applied. Original sequence length was {original_lengths}, "
f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
)
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][
:, -left_truncate_len:
]
self.tokenizer.padding_side = old_padding_side
return encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device)
def tok_decode(self, tokens, skip_special_tokens=True):
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
def _count_tokens_after_truncation(self, response_text: str, until_terms: List[str] = None) -> int:
"""
Unified token counting function: calculates the number of non-126081 tokens after truncating the response.
"""
# Apply truncation based on until parameters
truncated_text = response_text
if until_terms and not self.escape_until:
for term in until_terms:
if len(term) > 0:
truncated_text = truncated_text.split(term)[0]
# Re-tokenize processed answer and count non-126081 tokens
generated_answer_ids = torch.tensor(self.tokenizer(truncated_text)["input_ids"])
return int((generated_answer_ids != 126081).sum())
@classmethod
def create_from_arg_string(
cls: Type[T], arg_string: str, additional_config: Optional[dict] = None
) -> T:
"""
Creates an instance of the LM class using the given argument string and additional config.
Parameters:
- arg_string: A string containing arguments in the format key1=value1,key2=value2.
- additional_config: Optional dictionary containing additional configuration parameters.
Returns:
- Instance of the LM class.
"""
additional_config = {} if additional_config is None else additional_config
args = utils.simple_parse_args_string(arg_string)
args2 = {k: v for k, v in additional_config.items() if v is not None}
return cls(**args, **args2)
def apply_chat_template(
self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
) -> str:
"""
Method to apply a chat template to a list of chat history between user and model.
"""
try:
chat_templated = self.tokenizer.apply_chat_template(
chat_history,
tokenize=False,
add_generation_prompt=add_generation_prompt,
continue_final_message=not add_generation_prompt,
)
except jinja2.exceptions.TemplateError:
eval_logger.warning(
"Failed to apply chat template. removing the system role in chat history."
)
chat_history = [msg for msg in chat_history if msg["role"] != "system"]
chat_templated = self.tokenizer.apply_chat_template(
chat_history,
tokenize=False,
add_generation_prompt=add_generation_prompt,
continue_final_message=not add_generation_prompt,
)
return chat_templated
@property
def tokenizer_name(self) -> str:
return self.tokenizer.name_or_path.replace("/", "__")
def _generate_block_single(self, prompt):
"""
Generates a response for a single prompt using parallel block generation, based on KV cache, and uses pre-generated attention masks.
Returns: generated_sequence (List[int]) - List of generated token IDs
"""
self.model.eval()
mask_id = self.mask_token_id
block_size = self.block_size
block_add_threshold = self.block_add_threshold
skip_threshold = self.skip_threshold
# Pre-generate the full attention mask, using the model's data type
prompt_length = prompt.shape[1]
full_attention_mask = create_full_block_attention_mask(
prompt_length=prompt_length,
max_length=self.max_length,
block_size=block_size,
device=self.device,
dtype=self.target_dtype if self.target_dtype is not None and self.target_dtype != "auto" else torch.bfloat16
)
with torch.inference_mode():
# Initialization
x_t = prompt.to(self.device)
# Track block states - states can be: 'active', 'to_cache', 'in_cache'
# Added 'is_complete' field to indicate whether it's a complete state (True) or incomplete state (False)
block_states = {
0: {
'start_pos': 0,
'end_pos': prompt.shape[1],
'mask_count': 0,
'total_masks': prompt.shape[1],
'state': 'to_cache', # Prompt is immediately ready for caching
'is_complete': True, # Prompt is always in a complete state
},
}
# Initialize cache
past_key_values = None
current_blocks = 0 # Number of active blocks
step = 0
eos_detected = False # EOS detection flag
cache_length = 0
while current_blocks >= 0:
step += 1
# Check if a new block needs to be added
if len(block_states)-1 < (self.max_new_tokens // block_size) and not eos_detected:
last_block_id = len(block_states) - 1
current_progress = (block_states[last_block_id]['total_masks'] -
block_states[last_block_id]['mask_count']) / block_states[last_block_id]['total_masks']
if current_progress >= block_add_threshold:
# Add new block
new_block_id = len(block_states)
new_start_pos = x_t.shape[1]
x_t = torch.cat([x_t, torch.tensor([[mask_id] * block_size]).to(self.device)], dim=1)
block_states[new_block_id] = {
'start_pos': new_start_pos,
'end_pos': new_start_pos + block_size,
'mask_count': block_size,
'total_masks': block_size,
'state': 'active',
'is_complete': False, # New block defaults to an incomplete state
}
current_blocks += 1
# At the beginning of each loop, update the block's complete/incomplete states
self._update_block_completion_states(block_states, self.decoded_token_threshold)
# Check if there are still mask tokens
mask_index = (x_t == mask_id)
if mask_index.sum() == 0 and current_blocks == 0:
break
# Determine which blocks need to be added to the cache
blocks_to_cache = [bid for bid, state in block_states.items()
if state['state'] == 'to_cache']
# Determine the part to be processed
update_kvcache = 0
if blocks_to_cache:
# Find the earliest block to be cached
earliest_block_id = min(blocks_to_cache)
earliest_pos = block_states[earliest_block_id]['start_pos']
# Find the latest block to be cached
latest_block_id = max(blocks_to_cache)
latest_pos = block_states[latest_block_id]['end_pos']
# Update the cache for all blocks within this range
update_kvcache = latest_pos - earliest_pos
# Create input sequence for forward pass
process_start_pos = cache_length
if update_kvcache > 0:
# Need to update cache - use completed blocks
earliest_block_to_cache = min(blocks_to_cache)
input_seq = x_t[:, block_states[earliest_block_to_cache]['start_pos']:]
process_start_pos = block_states[earliest_block_to_cache]['start_pos']
else:
# Only process active blocks
active_blocks = [bid for bid, state in block_states.items() if state['state'] == 'active']
if active_blocks:
# Get all active blocks after caching
earliest_active_after_cache = float('inf')
for bid in active_blocks:
if block_states[bid]['start_pos'] >= cache_length:
earliest_active_after_cache = min(earliest_active_after_cache, block_states[bid]['start_pos'])
if earliest_active_after_cache < float('inf'):
input_seq = x_t[:, earliest_active_after_cache:]
process_start_pos = earliest_active_after_cache
else:
# No active blocks after caching, this should not happen
input_seq = x_t[:, cache_length:]
# If cache length is already equal to or exceeds sequence length, exit
if cache_length >= x_t.shape[1]:
print(f"Cache length ({cache_length}) >= sequence length ({x_t.shape[1]}) at step {step}. Exiting generation loop.")
raise Exception("Cache length >= sequence length")
else:
# No active blocks, but blocks might need to be cached in the next iteration
break
# Check if input_seq is empty
if input_seq.shape[1] == 0:
print(f"Warning: input_seq is empty at step {step}. Breaking generation loop.")
raise Exception("input_seq is empty")
# Extract the attention mask for the current input from the pre-generated full mask
input_length = input_seq.shape[1]
attention_mask = extract_attention_mask(
full_mask=full_attention_mask,
start_pos=process_start_pos,
input_length=input_length,
cache_length=cache_length
)
outputs = self.model(
input_seq,
attention_bias=attention_mask,
past_key_values=past_key_values,
use_cache=True,
update_kvcache=update_kvcache+cache_length,
)
# Get current logits - LLaDA model directly uses logits, no shifting needed
logits = outputs.logits
# Update cache if needed
if update_kvcache > 0:
# Update cache
past_key_values = outputs.past_key_values
# Mark blocks as cached
for block_id in blocks_to_cache:
block_states[block_id]['state'] = 'in_cache'
# Process mask tokens for each active block
blocks_to_deactivate = []
for block_id in sorted(block_states.keys()):
if block_states[block_id]['state'] != 'active':
continue
# Get mask positions for this block
block_start = block_states[block_id]['start_pos']
block_end = block_states[block_id]['end_pos']
block_mask_index = mask_index.clone()
block_mask_index[:, :block_start] = False
block_mask_index[:, block_end:] = False
# Skip if the current block has no masks
if block_mask_index.sum() == 0:
blocks_to_deactivate.append(block_id)
continue
# Calculate relative position of logits
logit_offset = block_start - process_start_pos
block_rel_positions = torch.where(block_mask_index[0, block_start:block_end])[0]
if block_rel_positions.size(0) > 0:
# Get logits for masked positions
block_mask_logits = logits[:, logit_offset + block_rel_positions, :]
# Sample tokens
confidence, x0, initial_confidence = sample_tokens(
block_mask_logits.squeeze(0),
self.temperature,
top_p=self.top_p,
top_k=self.top_k,
neg_entropy=(self.sampling_strategy == "neg_entropy"),
margin_confidence=(self.sampling_strategy == "margin_confidence")
)
# Use different sampling strategies based on the block's complete/incomplete state
is_complete = block_states[block_id]['is_complete']
if is_complete:
# Complete state: apply confidence threshold, if no high confidence, select the highest
high_conf_indices = torch.where(initial_confidence > skip_threshold)[0]
if len(high_conf_indices) == 0:
number_transfer_tokens = 1
_, transfer_index = torch.topk(confidence, number_transfer_tokens)
else:
transfer_index = torch.tensor([], device=self.device, dtype=torch.long)
# Merge indices
all_indices = torch.unique(torch.cat([transfer_index, high_conf_indices]))
else:
# Incomplete state: only apply confidence threshold, if no tokens exceed the threshold, select none
high_conf_indices = torch.where(initial_confidence > skip_threshold)[0]
all_indices = high_conf_indices
# Update tokens
if len(all_indices) > 0:
x0_ = torch.zeros_like(x0, device=self.device, dtype=torch.long) + mask_id
x0_[all_indices] = x0[all_indices].clone()
# Map indices back to original positions
for i, idx in enumerate(all_indices):
abs_pos = block_start + block_rel_positions[idx]
x_t[0, abs_pos] = x0_[idx]
# Update block state
block_states[block_id]['mask_count'] -= len(all_indices)
# Check for EOS token
eos_token_id = 126081
if eos_token_id is not None:
for idx in all_indices:
if x0[idx].item() == eos_token_id:
eos_detected = True
break
# Deactivate this block if no masks remain
mask_index = (x_t == mask_id)
block_mask_index = mask_index.clone()
block_mask_index[:, :block_start] = False
block_mask_index[:, block_end:] = False
if block_mask_index.sum() == 0:
blocks_to_deactivate.append(block_id)
continue
# Deactivate completed blocks and mark them for caching in the next iteration
for block_id in blocks_to_deactivate:
if block_states[block_id]['state'] == 'active':
# Check if all preceding blocks are already in a non-active state
can_deactivate = True
for prev_block_id in range(block_id):
if prev_block_id in block_states and block_states[prev_block_id]['state'] == 'active':
can_deactivate = False
break
# Only mark the current block as 'to_cache' if all preceding blocks are not active
if can_deactivate:
block_states[block_id]['state'] = 'to_cache'
current_blocks -= 1
# If there are active preceding blocks, keep the current block in active state (do nothing)
if update_kvcache > 0:
cache_length += update_kvcache
# Safety check
if step > 10000:
print(f"WARNING: Hit safety check at step {step}. Exiting generation loop.")
break
current_text = self.tokenizer.decode(x_t[0, prompt.shape[1]:].tolist(),skip_special_tokens=False)
# Generate final answer
generated_sequence = x_t[0, prompt.shape[1]:].tolist()
return generated_sequence
def generate_until(self, requests: List[Instance], disable_tqdm: bool = False):
res = []
start_time = time.time()
# Statistics variables
num_tokens = 0
num_nfe = 0
bar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)), desc="Running generate_until requests")
for i, req in enumerate(requests):
question = req.args[0]
# print("question:",question)
# exit()
gen_kwargs = req.args[1]
# Process input in LLaDA.py style
# print("Self.add_bos_token:", self.add_bos_token)
contexts = [question]
if self.add_bos_token:
contexts = [self.tokenizer.bos_token + p for p in contexts]
# Use the same tokenization method as LLaDA.py
context_enc, attn_masks = self.tok_batch_encode(
contexts,
truncation=self.truncation,
)
input_ids = context_enc[0].unsqueeze(0) # Take the first one and add batch dimension
# Add length check
if input_ids.shape[1] > self.max_length - self.max_new_tokens:
eval_logger.warning(f"Prompt length {input_ids.shape[1]} is larger than {self.max_length-self.max_new_tokens}, cutoff on the left side")
input_ids = input_ids[:, -(self.max_length-self.max_new_tokens):]
# Generate token IDs
generated_answer = self._generate_block_single(input_ids)
# Use tokenizer.batch_decode for decoding, consistent with LLaDA.py
cont_toks_list = self.tokenizer.batch_decode([generated_answer], skip_special_tokens=True)
s = cont_toks_list[0] # Take the first (and only) result
# Use unified token counting function
if self.show_speed:
num_tokens += self._count_tokens_after_truncation(s, gen_kwargs.get("until", []))
num_nfe += 1 # NFE uses simplified statistics (fixed to 1)
# Handle until truncation in LLaDA.py style
if not self.escape_until:
for term in gen_kwargs.get("until", []):
if len(term) > 0:
s = s.split(term)[0]
res.append(s)
bar.update(1)
bar.close()
# Save statistics only at the end
if self.save_dir is not None:
os.makedirs(self.save_dir, exist_ok=True)
final_time = time.time()
total_time = final_time - start_time
final_stats = {
"processed_samples": len(res),
"total_samples": len(requests),
"total_tokens": int(num_tokens),
"total_nfe": int(num_nfe),
"total_time": total_time,
"tokens_per_second": float(num_tokens) / total_time if total_time > 0 else 0.0,
"nfe_per_token": float(num_nfe) / float(num_tokens) if num_tokens > 0 else 0.0,
"timestamp": final_time
}
final_stats_path = os.path.join(self.save_dir, f'rank_{self.rank}_final_stats.json')
with open(final_stats_path, 'w', encoding='utf-8') as f:
json.dump(final_stats, f, ensure_ascii=False, indent=2)
if self.show_speed:
final_time = time.time()
total_time = final_time - start_time
print(f"\n=== Final Statistics ===")
print(f"Processed samples: {len(res)}")
print(f"Total tokens: {num_tokens}")
print(f"Total time: {total_time:.2f} seconds")
print(f"Throughput: {num_tokens / total_time:.2f} tokens/s")
print(f"Total NFE: {num_nfe}")
return res
def _forward_process(self, batch):
b, l = batch.shape
# sample from U[0, 1] following https://arxiv.org/pdf/2107.00630 I.1
u0 = torch.rand(1, device=batch.device, dtype=torch.float32)
indices = torch.arange(b, device=batch.device).float()
t = (u0 + indices / b) % 1
p_mask = (1 - self.sampling_eps) * t + self.sampling_eps
p_mask = p_mask[:, None].repeat(1, l)
mask_indices = torch.rand((b, l), device=batch.device) < p_mask
# always unmask bos and eos
mask_indices[:, 0] = False
mask_indices[:, -1] = False
noisy_batch = torch.where(mask_indices, self.mask_token_id, batch)
return noisy_batch, p_mask
@torch.no_grad()
def get_logits(self, batch, prompt_index):
'''
prompt_index : 1D bool tensor, length=batch.shape[1]
'''
if self.classifier_free_guidance > 1.:
assert len(prompt_index) == batch.shape[1]
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1)
un_batch = batch.clone()
un_batch[prompt_index] = self.mask_token_id
batch = torch.cat([batch, un_batch])
input = batch
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
logits = self.model(input).logits
# since bos always unmask, the first logits will not be used
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
if self.classifier_free_guidance > 1.:
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + self.cfg * (logits - un_logits)
return logits[:, :batch.shape[1]]
@torch.no_grad()
def _eval_target_nll_mc(self, prefix, target):
if prefix is None:
seq = target[None, :]
else:
seq = torch.concatenate([prefix, target])[None, :]
seq = seq.repeat((self.batch_size, 1)).to(self.device)
if self.log_type == 'ftb':
prompt_index = torch.arange(seq.shape[1], device=self.device) < len(prefix)
else:
prompt_index = torch.arange(seq.shape[1], device=self.device) >= len(prefix)
loss_acc = []
for _ in range(max(self.mc_num // self.batch_size, 1)):
perturbed_seq = seq.clone()
# eval_logger.info("before noising")
perturbed_seq_, p_mask = self._forward_process(seq)
# eval_logger.info("end noising")
if self.log_type == 'ftb':
perturbed_seq[:, -len(target):] = perturbed_seq_[:, -len(target):]
elif self.log_type == 'btf':
perturbed_seq[:, :len(prefix)] = perturbed_seq_[:, :len(prefix)]
elif self.log_type == 'union':
perturbed_seq = perturbed_seq_
else:
raise NotImplementedError(self.log_type)
mask_indices = perturbed_seq == self.mask_token_id
logits = self.get_logits(perturbed_seq, prompt_index)
loss = F.cross_entropy(logits[mask_indices], seq[mask_indices], reduction='none') / p_mask[mask_indices]
loss = loss.sum() / self.batch_size
loss_acc.append(loss.item())
return sum(loss_acc) / len(loss_acc)
@torch.no_grad()
def _eval_target_nll_ar(self, prefix, target):
prefix, target = prefix.unsqueeze(0), target.unsqueeze(0) # 1*l1, 1*l2
assert self.log_type in ['ftb', 'btf']
assert self.nll_type in ['ar_ftb', 'ar_btf']
if self.log_type == 'ftb':
prompt_index = torch.arange(prefix.shape[1] + target.shape[1], device=self.device) < prefix.shape[1]
else:
prompt_index = torch.arange(prefix.shape[1] + target.shape[1], device=self.device) >= prefix.shape[1]
if self.log_type == 'ftb':
perturbed_ = target.repeat(target.shape[1], 1).clone().contiguous() # l2*l2
else:
perturbed_ = prefix.repeat(prefix.shape[1], 1).clone().contiguous() # l1*l1
mask_index = torch.ones((perturbed_.shape[1], perturbed_.shape[1]), dtype=torch.bool)
if self.nll_type == 'ar_ftb':
mask_index = torch.triu(mask_index)
else:
mask_index = torch.tril(mask_index)
perturbed_[mask_index] = self.mask_token_id
if self.log_type == 'ftb':
perturbed_seq = torch.cat([prefix.repeat(perturbed_.shape[0], 1), perturbed_], dim=-1)
else:
perturbed_seq = torch.cat([perturbed_, target.repeat(perturbed_.shape[0], 1)], dim=-1)
logits_ = []
num = len(perturbed_seq) // self.batch_size if len(perturbed_seq) % self.batch_size == 0 else len(perturbed_seq) // self.batch_size + 1
for i in range(num):
end = (i + 1) * self.batch_size if (i + 1) * self.batch_size < len(perturbed_seq) else len(perturbed_seq)
perturbed_seq_ = perturbed_seq[i * self.batch_size: end]
perturbed_seq_ = perturbed_seq_.to(self.device)
if len(perturbed_seq_.shape) == 1:
perturbed_seq_ = perturbed_seq_.unsqueeze(0)
logits = self.get_logits(perturbed_seq_, prompt_index)
logits_.append(logits.cpu())
logits = torch.cat(logits_, dim=0)
temp_index = torch.ones((perturbed_.shape[1], perturbed_.shape[1]), dtype=torch.bool)
if self.nll_type == 'ar_ftb':
temp_index = torch.triu(temp_index, diagonal=1)
else:
temp_index = torch.tril(temp_index, diagonal=-1)
mask_index[temp_index] = False
if self.log_type == 'ftb':
logits_index = torch.cat([torch.zeros((perturbed_.shape[1], prefix.shape[1]), dtype=torch.bool), mask_index], dim=-1)
else:
logits_index = torch.cat([mask_index, torch.zeros((perturbed_.shape[1], target.shape[1]), dtype=torch.bool)], dim=-1)
if self.log_type == 'ftb':
loss = F.cross_entropy(logits[logits_index], target[0], reduction='sum').cpu().item()
else:
loss = F.cross_entropy(logits[logits_index], prefix[0], reduction='sum').cpu().item()
return loss
def _encode_pair(self, context, continuation):
if self.add_bos_token:
context = self.tokenizer.bos_token + context
n_spaces = len(context) - len(context.rstrip())
if n_spaces > 0:
continuation = context[-n_spaces:] + continuation
context = context[:-n_spaces]
whole_enc = self.tokenizer.encode(context + continuation) + [self.tokenizer.eos_token_id]
context_enc = self.tokenizer.encode(context)
context_enc_len = len(context_enc)
continuation_enc = whole_enc[context_enc_len:]
# by default truncate on the left
cutoff_length = max(len(whole_enc) - self.max_length, 0)
if cutoff_length > 0:
eval_logger.warning(f"Text length {len(whole_enc)} is larger than {self.max_length}, cutoff on the left side")
context_remain = context_enc_len-cutoff_length
if context_remain > 0:
context_enc = context_enc[-context_remain:]
else:
eval_logger.warning(f"All context (prompt) is truncated.")
context_enc = ""
continuation_enc = whole_enc[-self.max_length:]
return context_enc, continuation_enc
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
def _tokenize(e):
prefix, target = self._encode_pair(e["prefix"], e["target"])
return {
"prefix_text": e["prefix"],
"target_text": e["target"],
"prefix": prefix,
"target": target,
}
ds = []
ds = [{"prefix": req.args[0], "target": req.args[1]} for req in requests]
ds = Dataset.from_list(ds)
print(ds[0])
ds = ds.map(_tokenize)
ds = ds.with_format("torch")
out = []
with torch.no_grad():
for elem in tqdm(ds, desc="Computing likelihood..."):
prefix = elem["prefix"]
target = elem["target"]
# likelihood calculations are modified from https://github.com/ML-GSAI/SMDM/blob/main/evaluate_diff.py
if self.nll_type == 'mc':
ll = -self._eval_target_nll_mc(prefix, target)
if self.log_type == 'union':
ll = ll / (len(target) + len(prefix))
elif self.nll_type == 'ar_ftb' or self.nll_type == 'ar_btf':
ll = -self._eval_target_nll_ar(prefix, target)
else:
raise NotImplementedError(self.nll_type)
# TODO: greedy decoding
is_target_greedy_dec = False
out.append((ll, 1.0 if is_target_greedy_dec else 0.0))
return out
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
raise NotImplementedError
def _loglikelihood_tokens(self, requests, **kwargs) -> List[Tuple[float, bool]]:
raise NotImplementedError
def _update_block_completion_states(self, block_states, decoded_token_threshold):
"""
Updates the complete/incomplete state of blocks.
Iterates through blocks from front to back. If a block's decoded token count exceeds the threshold, the next block to its right (if it exists) is set to a complete state.
"""
for block_id in sorted(block_states.keys()):
# if block_id == 0: # Skip prompt block
# continue
# Calculate decoded tokens for the current block
decoded_tokens = block_states[block_id]['total_masks'] - block_states[block_id]['mask_count']
decode_ratio = decoded_tokens / block_states[block_id]['total_masks']
# If current block's decoded token count exceeds the threshold, the next block (if exists) is set to a complete state
# print("decode_ratio",decode_ratio)
# print("decoded_token_threshold",decoded_token_threshold)
if decode_ratio >= decoded_token_threshold:
next_block_id = block_id + 1
if next_block_id in block_states:
block_states[next_block_id]['is_complete'] = True
if __name__ == "__main__":
set_seed(1234)
cli_evaluate() |