File size: 21,356 Bytes
3a79903
 
 
bf74252
3a79903
 
 
d3a4d4d
 
 
 
 
 
3a79903
 
d3a4d4d
3a79903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import numpy as np
import traceback
import torch
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from openai import OpenAI
import time
import os 

api_key = os.environ.get("GEMINI_API_KEY")

if not api_key:
    raise ValueError("❌ Lỗi: Không tìm thấy GEMINI_API_KEY. Vui lòng cấu hình trong Settings -> Secrets.")

client = OpenAI(
    api_key=api_key,
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

def md_to_kb_safe(md_text, embedding_model_name="sentence-transformers/all-MiniLM-L6-v2"):
    try:
        headers_to_split_on = [("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3")]
        splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
        md_chunks = splitter.split_text(md_text)
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
        final_chunks = text_splitter.split_documents(md_chunks)
        texts = [doc.page_content for doc in final_chunks]
        device = "cuda" if torch.cuda.is_available() and torch.cuda.memory_allocated() < 2_000_000_000 else "cpu"
        embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs={"device": device})
        vectors = embedding_model.embed_documents(texts)
        kb = [{"text": texts[i], "vector": vectors[i]} for i in range(len(texts))]
        return {"success": True, "num_chunks": len(final_chunks), "kb": kb, "embed_model": embedding_model}
    except Exception as e:
        return {"success": False, "error": str(e), "traceback": traceback.format_exc()}

def cosine_similarity(v1, v2):
    return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))

def semantic_search(query, embed_model, kb, top_k=3):
    t0 = time.time()
    q_vec = np.array(embed_model.embed_query(query))
    scores = [(cosine_similarity(q_vec, item["vector"]), item["text"]) for item in kb]
    scores.sort(reverse=True, key=lambda x: x[0])
    return scores[:top_k], time.time() - t0

def build_context(results):
    ctx = ""
    for i, (score, chunk) in enumerate(results):
        ctx += f"=== Context {i+1} ===\n{chunk}\n\n"
    return ctx

def rag_answer(query, embed_model, kb):
    t0 = time.time()
    results, t_semantic = semantic_search(query, embed_model, kb, top_k=3)
    context = build_context(results)
    prompt = f"""Use ONLY the information in the following context.

{context}

Question: {query}

If the answer is not in the context, respond EXACTLY with:
"I do not have enough information to answer that."
"""
    response = client.chat.completions.create(
        model="gemini-2.5-pro",
        temperature=0,
        messages=[
            {"role": "system", "content": "Answer strictly using the context."},
            {"role": "user", "content": prompt}
        ]
    )
    answer = response.choices[0].message.content
    return answer, t_semantic, time.time() - t0

def evaluate_ai(response, true_answer):
    t0 = time.time()
    eval_prompt = f"""
AI Response: {response}
Ground Truth: {true_answer}

Rules:
- 1 = very close to true answer
- 0.5 = partially correct
- 0 = incorrect
"""
    response = client.chat.completions.create(
        model="gemini-2.5-pro",
        temperature=0,
        messages=[
            {"role": "system", "content": "You are an evaluation system."},
            {"role": "user", "content": eval_prompt}
        ]
    )
    return response.choices[0].message.content, time.time() - t0

def run_rag_pipeline(md_text_input, query, true_answer):
    kb_result = md_to_kb_safe(md_text_input)
    if not kb_result["success"]:
        return f"Error creating KB:\n{kb_result['error']}", None, None
    kb = kb_result["kb"]
    embed_model = kb_result["embed_model"]
    answer, t_semantic, t_rag = rag_answer(query, embed_model, kb)
    score, t_eval = evaluate_ai(answer, true_answer)
    timings = f"Semantic Search: {t_semantic:.2f}s | LLM Answer: {t_rag:.2f}s | Evaluation: {t_eval:.2f}s"
    return answer, score, timings
import base64
import os
import re
import time
import zipfile
from pathlib import Path

import click
import gradio as gr
from gradio_pdf import PDF
from loguru import logger

from mineru.cli.common import prepare_env, read_fn, aio_do_parse, pdf_suffixes, image_suffixes
from mineru.utils.cli_parser import arg_parse
from mineru.utils.hash_utils import str_sha256


async def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, formula_enable, table_enable, language, backend, url):
    os.makedirs(output_dir, exist_ok=True)

    try:
        file_name = f'{safe_stem(Path(doc_path).stem)}_{time.strftime("%y%m%d_%H%M%S")}'
        pdf_data = read_fn(doc_path)
        if is_ocr:
            parse_method = 'ocr'
        else:
            parse_method = 'auto'

        if backend.startswith("vlm"):
            parse_method = "vlm"

        local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method)
        await aio_do_parse(
            output_dir=output_dir,
            pdf_file_names=[file_name],
            pdf_bytes_list=[pdf_data],
            p_lang_list=[language],
            parse_method=parse_method,
            end_page_id=end_page_id,
            formula_enable=formula_enable,
            table_enable=table_enable,
            backend=backend,
            server_url=url,
        )
        return local_md_dir, file_name
    except Exception as e:
        logger.exception(e)
        return None


def compress_directory_to_zip(directory_path, output_zip_path):

    try:
        with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:

            for root, dirs, files in os.walk(directory_path):
                for file in files:
                    file_path = os.path.join(root, file)
                    arcname = os.path.relpath(file_path, directory_path)
                    zipf.write(file_path, arcname)
        return 0
    except Exception as e:
        logger.exception(e)
        return -1


def image_to_base64(image_path):
    with open(image_path, 'rb') as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


def replace_image_with_base64(markdown_text, image_dir_path):
    pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)'

    def replace(match):
        relative_path = match.group(1)
        full_path = os.path.join(image_dir_path, relative_path)
        base64_image = image_to_base64(full_path)
        return f'![{relative_path}](data:image/jpeg;base64,{base64_image})'

    return re.sub(pattern, replace, markdown_text)


async def to_markdown(file_path, end_pages=10, is_ocr=False, formula_enable=True, table_enable=True, language="ch", backend="pipeline", url=None):
    file_path = to_pdf(file_path)
    local_md_dir, file_name = await parse_pdf(file_path, './output', end_pages - 1, is_ocr, formula_enable, table_enable, language, backend, url)
    archive_zip_path = os.path.join('./output', str_sha256(local_md_dir) + '.zip')
    zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path)
    if zip_archive_success == 0:
        logger.info('Compression successful')
    else:
        logger.error('Compression failed')
    md_path = os.path.join(local_md_dir, file_name + '.md')
    with open(md_path, 'r', encoding='utf-8') as f:
        txt_content = f.read()
    md_content = replace_image_with_base64(txt_content, local_md_dir)
    new_pdf_path = os.path.join(local_md_dir, file_name + '_layout.pdf')

    return md_content, txt_content, archive_zip_path, new_pdf_path
import asyncio
import traceback

async def to_markdown_safe(file_path, end_pages=10, is_ocr=False,
                            formula_enable=True, table_enable=True,
                            language="ch", backend="pipeline", url=None):
    try:
        return await to_markdown(file_path, end_pages, is_ocr,
                                 formula_enable, table_enable,
                                 language, backend, url)
    except Exception as e:
        err_msg = traceback.format_exc()
        logger.error(f"Error in to_markdown: {err_msg}")
        return f"Error: {str(e)}", err_msg, None, None


latex_delimiters_type_a = [
    {'left': '$$', 'right': '$$', 'display': True},
    {'left': '$', 'right': '$', 'display': False},
]
latex_delimiters_type_b = [
    {'left': '\\(', 'right': '\\)', 'display': False},
    {'left': '\\[', 'right': '\\]', 'display': True},
]
latex_delimiters_type_all = latex_delimiters_type_a + latex_delimiters_type_b


header = """
<html><head><link rel="stylesheet"href="https://use.fontawesome.com/releases/v5.15.4/css/all.css"><style>.link-block{border:1px solid transparent;border-radius:24px;background-color:rgba(54,54,54,1);cursor:pointer!important}.link-block:hover{background-color:rgba(54,54,54,0.75)!important;cursor:pointer!important}.external-link{display:inline-flex;align-items:center;height:36px;line-height:36px;padding:0 16px;cursor:pointer!important}.external-link,.external-link:hover{cursor:pointer!important}a{text-decoration:none}</style></head><body><div style="
  display: flex;
  flex-direction: column;
  justify-content: center;
  align-items: center;
  text-align: center;
  background: linear-gradient(45deg, #007bff 0%, #0056b3 100%);
  padding: 24px;
  gap: 24px;
  border-radius: 8px;
"><div style="
    display: flex;
    flex-direction: column;
    align-items: center;
    gap: 16px;
  "><div style="display: flex; flex-direction: column; gap: 8px"><h1 style="
        font-size: 48px;
        color: #fafafa;
        margin: 0;
        font-family: 'Trebuchet MS', 'Lucida Sans Unicode',
          'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
      ">MinerU 2.5:PDF Extraction Demo</h1></div></div><p style="
    margin: 0;
    line-height: 1.6rem;
    font-size: 16px;
    color: #fafafa;
    opacity: 0.8;
  ">A one-stop,open-source,high-quality data extraction tool that supports converting PDF to Markdown and JSON.<br></p><style>.link-block{display:inline-block}.link-block+.link-block{margin-left:20px}</style><div class="column has-text-centered"><div class="publication-links"><!--Code Link.--><span class="link-block"><a href="https://github.com/opendatalab/MinerU"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 4px"><i class="fab fa-github"style="color: white; margin-right: 4px"></i></span><span style="color: white">Code</span></a></span><!--Code Link.--><span class="link-block"><a href="https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 4px"><i class="fas fa-archive"style="color: white; margin-right: 4px"></i></span><span style="color: white">Model</span></a></span><!--arXiv Link.--><span class="link-block"><a href="https://arxiv.org/abs/2409.18839"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-file"style="color: white"></i></span><span style="color: white">Paper</span></a></span><!--Homepage Link.--><span class="link-block"><a href="https://mineru.net/home?source=online"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-home"style="color: white"></i></span><span style="color: white">Homepage</span></a></span><!--Client Link.--><span class="link-block"><a href="https://mineru.net/client?source=online"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-download"style="color: white"></i></span><span style="color: white">Download</span></a></span></div></div><!--New Demo Links--></div></body></html>
"""


latin_lang = [
        'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr',  # noqa: E126
        'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
        'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
        'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german'
]
arabic_lang = ['ar', 'fa', 'ug', 'ur']
cyrillic_lang = [
        'rs_cyrillic', 'bg', 'mn', 'abq', 'ady', 'kbd', 'ava',  # noqa: E126
        'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
]
east_slavic_lang = ["ru", "be", "uk"]
devanagari_lang = [
        'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom',  # noqa: E126
        'sa', 'bgc'
]
other_lang = ['ch', 'ch_lite', 'ch_server', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka', "el", "th"]
add_lang = ['latin', 'arabic', 'east_slavic', 'cyrillic', 'devanagari']

all_lang = []
all_lang.extend([*other_lang, *add_lang])


def safe_stem(file_path):
    stem = Path(file_path).stem
    return re.sub(r'[^\w.]', '_', stem)


def to_pdf(file_path):

    if file_path is None:
        return None

    pdf_bytes = read_fn(file_path)

    unique_filename = f'{safe_stem(file_path)}.pdf'

    tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename)

    with open(tmp_file_path, 'wb') as tmp_pdf_file:
        tmp_pdf_file.write(pdf_bytes)

    return tmp_file_path


def update_interface(backend_choice):
    if backend_choice in ["vlm-transformers", "vlm-vllm-async-engine"]:
        return gr.update(visible=False), gr.update(visible=False)
    elif backend_choice in ["vlm-http-client"]:
        return gr.update(visible=True), gr.update(visible=False)
    elif backend_choice in ["pipeline"]:
        return gr.update(visible=False), gr.update(visible=True)
    else:
        pass


@click.command(context_settings=dict(ignore_unknown_options=True, allow_extra_args=True))
@click.pass_context
@click.option(
    '--enable-example',
    'example_enable',
    type=bool,
    help="Enable example files for input."
         "The example files to be input need to be placed in the `example` folder within the directory where the command is currently executed.",
    default=True,
)
@click.option(
    '--enable-vllm-engine',
    'vllm_engine_enable',
    type=bool,
    help="Enable vLLM engine backend for faster processing.",
    default=False,
)
@click.option(
    '--enable-api',
    'api_enable',
    type=bool,
    help="Enable gradio API for serving the application.",
    default=True,
)
@click.option(
    '--max-convert-pages',
    'max_convert_pages',
    type=int,
    help="Set the maximum number of pages to convert from PDF to Markdown.",
    default=1000,
)
@click.option(
    '--server-name',
    'server_name',
    type=str,
    help="Set the server name for the Gradio app.",
    default=None,
)
@click.option(
    '--server-port',
    'server_port',
    type=int,
    help="Set the server port for the Gradio app.",
    default=None,
)
@click.option(
    '--latex-delimiters-type',
    'latex_delimiters_type',
    type=click.Choice(['a', 'b', 'all']),
    help="Set the type of LaTeX delimiters to use in Markdown rendering:"
         "'a' for type '$', 'b' for type '()[]', 'all' for both types.",
    default='all',
)
def main(ctx,
        example_enable, vllm_engine_enable, api_enable, max_convert_pages,
        server_name, server_port, latex_delimiters_type, **kwargs
):

    kwargs.update(arg_parse(ctx))

    if latex_delimiters_type == 'a':
        latex_delimiters = latex_delimiters_type_a
    elif latex_delimiters_type == 'b':
        latex_delimiters = latex_delimiters_type_b
    elif latex_delimiters_type == 'all':
        latex_delimiters = latex_delimiters_type_all
    else:
        raise ValueError(f"Invalid latex delimiters type: {latex_delimiters_type}.")

    if vllm_engine_enable:
        try:
            print("Start init vLLM engine...")
            from mineru.backend.vlm.vlm_analyze import ModelSingleton
            model_singleton = ModelSingleton()
            predictor = model_singleton.get_model(
                "vllm-async-engine",
                None,
                None,
                **kwargs
            )
            print("vLLM engine init successfully.")
        except Exception as e:
            logger.exception(e)
    suffixes = [f".{suffix}" for suffix in pdf_suffixes + image_suffixes]
    with gr.Blocks() as demo:
        gr.HTML(header)
        with gr.Row():
            with gr.Column(variant='panel', scale=5):
                with gr.Row():
                    input_file = gr.File(label='Please upload a PDF or image', file_types=suffixes)
                with gr.Row():
                    max_pages = gr.Slider(1, max_convert_pages, int(max_convert_pages/2), step=1, label='Max convert pages')
                with gr.Row():
                    if vllm_engine_enable:
                        drop_list = ["pipeline", "vlm-vllm-async-engine"]
                        preferred_option = "vlm-vllm-async-engine"
                    else:
                        drop_list = ["pipeline", "vlm-transformers", "vlm-http-client"]
                        preferred_option = "pipeline"
                    backend = gr.Dropdown(drop_list, label="Backend", value=preferred_option)
                with gr.Row(visible=False) as client_options:
                    url = gr.Textbox(label='Server URL', value='http://localhost:30000', placeholder='http://localhost:30000')
                with gr.Row(equal_height=True):
                    with gr.Column():
                        gr.Markdown("**Recognition Options:**")
                        formula_enable = gr.Checkbox(label='Enable formula recognition', value=True)
                        table_enable = gr.Checkbox(label='Enable table recognition', value=True)
                    with gr.Column(visible=False) as ocr_options:
                        language = gr.Dropdown(all_lang, label='Language', value='ch')
                        is_ocr = gr.Checkbox(label='Force enable OCR', value=False)
                with gr.Row():
                    change_bu = gr.Button('Convert')
                    clear_bu = gr.ClearButton(value='Clear')
                pdf_show = PDF(label='PDF preview', interactive=False, visible=True, height=800)
                if example_enable:
                    example_root = os.path.join(os.getcwd(), 'examples')
                    if os.path.exists(example_root):
                        with gr.Accordion('Examples:'):
                            gr.Examples(
                                examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if
                                          _.endswith(tuple(suffixes))],
                                inputs=input_file
                            )

            with gr.Column(variant='panel', scale=5):
                output_file = gr.File(label='convert result', interactive=False)
                with gr.Tabs():
                    with gr.Tab('Markdown rendering'):
                        md = gr.Markdown(label='Markdown rendering', height=1100, show_copy_button=True,
                                         latex_delimiters=latex_delimiters,
                                         line_breaks=True)
                    with gr.Tab('Markdown text'):
                        md_text = gr.TextArea(lines=45, show_copy_button=True)
                    with gr.Tab("RAG QA"):
                        rag_md_text = gr.TextArea(label="Paste Markdown here", lines=15)
                        rag_query = gr.Textbox(label="Your Question")
                        rag_true = gr.Textbox(label="Ground Truth Answer (optional)")
                        rag_run = gr.Button("Run RAG")
                        rag_answer_out = gr.TextArea(label="RAG Answer", lines=15, interactive=False)
                        rag_score_out = gr.Textbox(label="Evaluation Score")
                        rag_timing_out = gr.Textbox(label="Timings")
                        rag_run.click(
                            fn=run_rag_pipeline,
                            inputs=[rag_md_text, rag_query, rag_true],
                            outputs=[rag_answer_out, rag_score_out, rag_timing_out]
                        )
        backend.change(
            fn=update_interface,
            inputs=[backend],
            outputs=[client_options, ocr_options],
            api_name=False
        )
        demo.load(
            fn=update_interface,
            inputs=[backend],
            outputs=[client_options, ocr_options],
            api_name=False
        )
        clear_bu.add([input_file, md, pdf_show, md_text, output_file, is_ocr])

        if api_enable:
            api_name = None
        else:
            api_name = False

        input_file.change(fn=to_pdf, inputs=input_file, outputs=pdf_show, api_name=api_name)
        change_bu.click(
            fn=lambda *args: asyncio.run(to_markdown_safe(*args)),
            inputs=[input_file, max_pages, is_ocr, formula_enable, table_enable, language, backend, url],
            outputs=[md, md_text, output_file, pdf_show],
            api_name=api_name
        )


    demo.launch(server_name=server_name, server_port=server_port, show_api=api_enable, height=1200)
if __name__ == "__main__":
    main()