Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================================================================
|
| 2 |
+
# CONTENTFORGE AI - FASTAPI BACKEND
|
| 3 |
+
# REST API for multi-modal AI platform
|
| 4 |
+
# ============================================================================
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, HTTPException, Header, File, UploadFile
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pydantic import BaseModel
|
| 9 |
+
from typing import Optional
|
| 10 |
+
import torch
|
| 11 |
+
import os
|
| 12 |
+
from huggingface_hub import login
|
| 13 |
+
import base64
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
# ============================================================================
|
| 18 |
+
# AUTHENTICATION
|
| 19 |
+
# ============================================================================
|
| 20 |
+
|
| 21 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 22 |
+
if HF_TOKEN:
|
| 23 |
+
print("🔐 Authenticating with HuggingFace...")
|
| 24 |
+
login(token=HF_TOKEN)
|
| 25 |
+
print("✅ Authenticated!\n")
|
| 26 |
+
|
| 27 |
+
from transformers import (
|
| 28 |
+
T5Tokenizer, T5ForConditionalGeneration,
|
| 29 |
+
Qwen2VLForConditionalGeneration, Qwen2VLProcessor,
|
| 30 |
+
AutoProcessor, MusicgenForConditionalGeneration
|
| 31 |
+
)
|
| 32 |
+
from peft import PeftModel
|
| 33 |
+
from qwen_vl_utils import process_vision_info
|
| 34 |
+
from diffusers import StableDiffusionPipeline
|
| 35 |
+
from PIL import Image
|
| 36 |
+
|
| 37 |
+
# ============================================================================
|
| 38 |
+
# FASTAPI APP SETUP
|
| 39 |
+
# ============================================================================
|
| 40 |
+
|
| 41 |
+
app = FastAPI(
|
| 42 |
+
title="ContentForge AI API",
|
| 43 |
+
description="Multi-modal AI API for education and social media content generation",
|
| 44 |
+
version="1.0.0"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# CORS - Allow requests from your frontend
|
| 48 |
+
app.add_middleware(
|
| 49 |
+
CORSMiddleware,
|
| 50 |
+
allow_origins=["*"], # In production: ["https://yourwebsite.vercel.app"]
|
| 51 |
+
allow_credentials=True,
|
| 52 |
+
allow_methods=["*"],
|
| 53 |
+
allow_headers=["*"],
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Simple API key authentication (improve this for production!)
|
| 57 |
+
API_KEYS = {
|
| 58 |
+
"demo_key_123": "Demo User",
|
| 59 |
+
"sk_test_456": "Test User",
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
def verify_api_key(x_api_key: str = Header(None)):
|
| 63 |
+
"""Verify API key from header"""
|
| 64 |
+
if x_api_key not in API_KEYS:
|
| 65 |
+
raise HTTPException(status_code=401, detail="Invalid API Key")
|
| 66 |
+
return API_KEYS[x_api_key]
|
| 67 |
+
|
| 68 |
+
# ============================================================================
|
| 69 |
+
# LOAD MODELS
|
| 70 |
+
# ============================================================================
|
| 71 |
+
|
| 72 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 73 |
+
print(f"🖥️ Using device: {device}")
|
| 74 |
+
print("📦 Loading models...\n")
|
| 75 |
+
|
| 76 |
+
# 1. T5 Model
|
| 77 |
+
print("📝 Loading T5...")
|
| 78 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("Bashaarat1/t5-small-arxiv-summarizer")
|
| 79 |
+
t5_model = T5ForConditionalGeneration.from_pretrained(
|
| 80 |
+
"Bashaarat1/t5-small-arxiv-summarizer"
|
| 81 |
+
).to(device)
|
| 82 |
+
t5_model.eval()
|
| 83 |
+
print("✅ T5 loaded!")
|
| 84 |
+
|
| 85 |
+
# 2. Qwen VLM
|
| 86 |
+
print("🤖 Loading Qwen...")
|
| 87 |
+
qwen_base = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 88 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
| 89 |
+
device_map="auto",
|
| 90 |
+
torch_dtype=torch.bfloat16
|
| 91 |
+
)
|
| 92 |
+
qwen_model = PeftModel.from_pretrained(
|
| 93 |
+
qwen_base,
|
| 94 |
+
"Bashaarat1/qwen-finetuned-scienceqa"
|
| 95 |
+
)
|
| 96 |
+
qwen_processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 97 |
+
qwen_model.eval()
|
| 98 |
+
print("✅ Qwen loaded!")
|
| 99 |
+
|
| 100 |
+
# 3. MusicGen
|
| 101 |
+
print("🎵 Loading MusicGen...")
|
| 102 |
+
music_processor = AutoProcessor.from_pretrained("Bashaarat1/fine-tuned-musicgen-small")
|
| 103 |
+
music_model = MusicgenForConditionalGeneration.from_pretrained(
|
| 104 |
+
"Bashaarat1/fine-tuned-musicgen-small"
|
| 105 |
+
).to(device)
|
| 106 |
+
music_model.eval()
|
| 107 |
+
print("✅ MusicGen loaded!")
|
| 108 |
+
|
| 109 |
+
# 4. Stable Diffusion
|
| 110 |
+
print("🎨 Loading Stable Diffusion...")
|
| 111 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
| 112 |
+
"runwayml/stable-diffusion-v1-5",
|
| 113 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 114 |
+
safety_checker=None
|
| 115 |
+
).to(device)
|
| 116 |
+
print("✅ Stable Diffusion loaded!")
|
| 117 |
+
|
| 118 |
+
print("\n🎉 All models loaded! API ready.\n")
|
| 119 |
+
|
| 120 |
+
# ============================================================================
|
| 121 |
+
# REQUEST/RESPONSE MODELS
|
| 122 |
+
# ============================================================================
|
| 123 |
+
|
| 124 |
+
class SummarizeRequest(BaseModel):
|
| 125 |
+
text: str
|
| 126 |
+
max_length: int = 128
|
| 127 |
+
|
| 128 |
+
class SummarizeResponse(BaseModel):
|
| 129 |
+
summary: str
|
| 130 |
+
original_words: int
|
| 131 |
+
summary_words: int
|
| 132 |
+
|
| 133 |
+
class QARequest(BaseModel):
|
| 134 |
+
question: str
|
| 135 |
+
image_base64: Optional[str] = None
|
| 136 |
+
|
| 137 |
+
class QAResponse(BaseModel):
|
| 138 |
+
answer: str
|
| 139 |
+
|
| 140 |
+
class ImageRequest(BaseModel):
|
| 141 |
+
prompt: str
|
| 142 |
+
negative_prompt: str = ""
|
| 143 |
+
num_steps: int = 25
|
| 144 |
+
|
| 145 |
+
class ImageResponse(BaseModel):
|
| 146 |
+
image_base64: str
|
| 147 |
+
|
| 148 |
+
class MusicRequest(BaseModel):
|
| 149 |
+
prompt: str
|
| 150 |
+
duration: int = 10
|
| 151 |
+
|
| 152 |
+
class MusicResponse(BaseModel):
|
| 153 |
+
audio_base64: str
|
| 154 |
+
sampling_rate: int
|
| 155 |
+
|
| 156 |
+
# ============================================================================
|
| 157 |
+
# API ENDPOINTS
|
| 158 |
+
# ============================================================================
|
| 159 |
+
|
| 160 |
+
@app.get("/")
|
| 161 |
+
def root():
|
| 162 |
+
"""API health check"""
|
| 163 |
+
return {
|
| 164 |
+
"status": "online",
|
| 165 |
+
"message": "ContentForge AI API",
|
| 166 |
+
"version": "1.0.0",
|
| 167 |
+
"endpoints": [
|
| 168 |
+
"/summarize",
|
| 169 |
+
"/qa",
|
| 170 |
+
"/generate-image",
|
| 171 |
+
"/generate-music"
|
| 172 |
+
]
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
@app.post("/summarize", response_model=SummarizeResponse)
|
| 176 |
+
def summarize(
|
| 177 |
+
request: SummarizeRequest,
|
| 178 |
+
user: str = Header(None, alias="x-api-key")
|
| 179 |
+
):
|
| 180 |
+
"""Summarize text using fine-tuned T5"""
|
| 181 |
+
verify_api_key(user)
|
| 182 |
+
|
| 183 |
+
if not request.text.strip():
|
| 184 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
inputs = t5_tokenizer(
|
| 188 |
+
f"summarize: {request.text}",
|
| 189 |
+
return_tensors="pt",
|
| 190 |
+
max_length=512,
|
| 191 |
+
truncation=True
|
| 192 |
+
).to(device)
|
| 193 |
+
|
| 194 |
+
with torch.no_grad():
|
| 195 |
+
outputs = t5_model.generate(
|
| 196 |
+
**inputs,
|
| 197 |
+
max_length=request.max_length,
|
| 198 |
+
min_length=30,
|
| 199 |
+
num_beams=4,
|
| 200 |
+
early_stopping=True
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 204 |
+
|
| 205 |
+
return SummarizeResponse(
|
| 206 |
+
summary=summary,
|
| 207 |
+
original_words=len(request.text.split()),
|
| 208 |
+
summary_words=len(summary.split())
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 213 |
+
|
| 214 |
+
@app.post("/qa", response_model=QAResponse)
|
| 215 |
+
def question_answer(
|
| 216 |
+
request: QARequest,
|
| 217 |
+
user: str = Header(None, alias="x-api-key")
|
| 218 |
+
):
|
| 219 |
+
"""Answer questions with optional image using Qwen VLM"""
|
| 220 |
+
verify_api_key(user)
|
| 221 |
+
|
| 222 |
+
if not request.question.strip():
|
| 223 |
+
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
image = None
|
| 227 |
+
if request.image_base64:
|
| 228 |
+
# Decode base64 image
|
| 229 |
+
image_data = base64.b64decode(request.image_base64)
|
| 230 |
+
image = Image.open(BytesIO(image_data)).convert('RGB')
|
| 231 |
+
|
| 232 |
+
# Prepare messages
|
| 233 |
+
if image is not None:
|
| 234 |
+
messages = [{
|
| 235 |
+
"role": "user",
|
| 236 |
+
"content": [
|
| 237 |
+
{"type": "image", "image": image},
|
| 238 |
+
{"type": "text", "text": request.question}
|
| 239 |
+
]
|
| 240 |
+
}]
|
| 241 |
+
else:
|
| 242 |
+
messages = [{
|
| 243 |
+
"role": "user",
|
| 244 |
+
"content": [{"type": "text", "text": request.question}]
|
| 245 |
+
}]
|
| 246 |
+
|
| 247 |
+
text_prompt = qwen_processor.apply_chat_template(
|
| 248 |
+
messages,
|
| 249 |
+
tokenize=False,
|
| 250 |
+
add_generation_prompt=True
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
if image is not None:
|
| 254 |
+
img_inputs, _ = process_vision_info(messages)
|
| 255 |
+
inputs = qwen_processor(
|
| 256 |
+
text=[text_prompt],
|
| 257 |
+
images=img_inputs,
|
| 258 |
+
return_tensors="pt"
|
| 259 |
+
).to(device)
|
| 260 |
+
else:
|
| 261 |
+
inputs = qwen_processor(
|
| 262 |
+
text=[text_prompt],
|
| 263 |
+
return_tensors="pt"
|
| 264 |
+
).to(device)
|
| 265 |
+
|
| 266 |
+
with torch.no_grad():
|
| 267 |
+
outputs = qwen_model.generate(**inputs, max_new_tokens=200)
|
| 268 |
+
|
| 269 |
+
answer = qwen_processor.batch_decode(
|
| 270 |
+
outputs[:, inputs.input_ids.size(1):],
|
| 271 |
+
skip_special_tokens=True
|
| 272 |
+
)[0].strip()
|
| 273 |
+
|
| 274 |
+
return QAResponse(answer=answer)
|
| 275 |
+
|
| 276 |
+
except Exception as e:
|
| 277 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 278 |
+
|
| 279 |
+
@app.post("/generate-image", response_model=ImageResponse)
|
| 280 |
+
def generate_image(
|
| 281 |
+
request: ImageRequest,
|
| 282 |
+
user: str = Header(None, alias="x-api-key")
|
| 283 |
+
):
|
| 284 |
+
"""Generate image using Stable Diffusion"""
|
| 285 |
+
verify_api_key(user)
|
| 286 |
+
|
| 287 |
+
if not request.prompt.strip():
|
| 288 |
+
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
| 289 |
+
|
| 290 |
+
try:
|
| 291 |
+
with torch.no_grad():
|
| 292 |
+
image = sd_pipe(
|
| 293 |
+
request.prompt,
|
| 294 |
+
negative_prompt=request.negative_prompt,
|
| 295 |
+
num_inference_steps=request.num_steps,
|
| 296 |
+
guidance_scale=7.5
|
| 297 |
+
).images[0]
|
| 298 |
+
|
| 299 |
+
# Convert image to base64
|
| 300 |
+
buffered = BytesIO()
|
| 301 |
+
image.save(buffered, format="PNG")
|
| 302 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 303 |
+
|
| 304 |
+
return ImageResponse(image_base64=img_str)
|
| 305 |
+
|
| 306 |
+
except Exception as e:
|
| 307 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 308 |
+
|
| 309 |
+
@app.post("/generate-music", response_model=MusicResponse)
|
| 310 |
+
def generate_music(
|
| 311 |
+
request: MusicRequest,
|
| 312 |
+
user: str = Header(None, alias="x-api-key")
|
| 313 |
+
):
|
| 314 |
+
"""Generate music using MusicGen"""
|
| 315 |
+
verify_api_key(user)
|
| 316 |
+
|
| 317 |
+
if not request.prompt.strip():
|
| 318 |
+
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
|
| 319 |
+
|
| 320 |
+
try:
|
| 321 |
+
inputs = music_processor(
|
| 322 |
+
text=[request.prompt],
|
| 323 |
+
padding=True,
|
| 324 |
+
return_tensors="pt"
|
| 325 |
+
).to(device)
|
| 326 |
+
|
| 327 |
+
max_tokens = int(request.duration * 50)
|
| 328 |
+
|
| 329 |
+
with torch.no_grad():
|
| 330 |
+
audio_values = music_model.generate(
|
| 331 |
+
**inputs,
|
| 332 |
+
max_new_tokens=max_tokens,
|
| 333 |
+
do_sample=True
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
sampling_rate = music_model.config.audio_encoder.sampling_rate
|
| 337 |
+
audio_data = audio_values[0, 0].cpu().numpy()
|
| 338 |
+
|
| 339 |
+
# Convert audio to base64
|
| 340 |
+
audio_bytes = BytesIO()
|
| 341 |
+
np.save(audio_bytes, audio_data)
|
| 342 |
+
audio_str = base64.b64encode(audio_bytes.getvalue()).decode()
|
| 343 |
+
|
| 344 |
+
return MusicResponse(
|
| 345 |
+
audio_base64=audio_str,
|
| 346 |
+
sampling_rate=sampling_rate
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
except Exception as e:
|
| 350 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 351 |
+
|
| 352 |
+
# ============================================================================
|
| 353 |
+
# RUN SERVER
|
| 354 |
+
# ============================================================================
|
| 355 |
+
|
| 356 |
+
if __name__ == "__main__":
|
| 357 |
+
import uvicorn
|
| 358 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|