Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,612 Bytes
55d584b d90df2b 06c76fb 55d584b ec38897 55d584b 09adbc1 ec38897 09adbc1 a0dbf73 a090266 a0dbf73 ec38897 a0dbf73 ec38897 a0dbf73 ec38897 a0dbf73 55d584b 2133289 55d584b bfcb0d4 55d584b 2133289 55d584b 2133289 d90df2b ec38897 d90df2b 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b ec38897 55d584b 4143d66 55d584b 4143d66 55d584b 4143d66 55d584b ec38897 55d584b 2133289 55d584b 4143d66 55d584b ec38897 55d584b 4143d66 16664af 4143d66 16664af 55d584b 2133289 55d584b ec38897 55d584b 4124d89 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b d90df2b 55d584b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
"""
Warbler CDA - HuggingFace Space Demo
Interactive demo of the Cognitive Development Architecture RAG system
"""
import json
import time
import os
import threading
import gradio as gr
import spaces
from pathlib import Path
from typing import Tuple, Optional, Dict
# Set TOKENIZERS_PARALLELISM to avoid warnings with SentenceTransformers
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Global variables for background ingestion tracking
ingestion_status = {
"running": False,
"total_docs": 0,
"processed": 0,
"failed": 0,
"start_time": None,
"eta": 0,
"rate": 0,
}
def background_ingest_packs(api, pack_docs, pack_manager):
"""Background function to ingest packs without blocking app startup"""
global ingestion_status
# Suppress numpy warnings during ingestion to avoid cluttering logs in HF Spaces
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="invalid value encountered", category=RuntimeWarning)
ingestion_status["running"] = True
ingestion_status["total_docs"] = len(pack_docs)
ingestion_status["processed"] = 0
ingestion_status["failed"] = 0
ingestion_status["start_time"] = time.time()
print(f"[INFO] Ingesting {len(pack_docs)} documents from Warbler packs...")
total_docs = len(pack_docs)
processed = 0
failed = 0
start_time = time.time()
batch_size = 1000
# Process in batches to avoid memory issues and provide progress
for batch_start in range(0, total_docs, batch_size):
batch_end = min(batch_start + batch_size, total_docs)
batch = pack_docs[batch_start:batch_end]
batch_processed = 0
batch_failed = 0
for doc in batch:
success = api.add_document(doc["id"], doc["content"], doc["metadata"])
if not success:
batch_failed += 1
failed += 1
if failed <= 5: # Log first few failures
print(f"[WARN] Failed to add document {doc['id']}")
batch_processed += 1
processed += 1
# Update global status
ingestion_status["processed"] = processed
ingestion_status["failed"] = failed
# Progress update after each batch
elapsed = time.time() - start_time
rate = processed / elapsed if elapsed > 0 else 0
eta = (total_docs - processed) / rate if rate > 0 else 0
ingestion_status["rate"] = rate
ingestion_status["eta"] = eta
print(
f"[PROGRESS] {processed}/{total_docs} documents ingested "
f"({processed/total_docs*100:.1f}%) - "
f"{rate:.1f} docs/sec - ETA: {eta/60:.1f} min"
)
# Force garbage collection after large batches to free memory
if processed % 10000 == 0:
import gc
gc.collect()
packs_loaded = processed
pack_manager.mark_packs_ingested(1, packs_loaded)
total_time = time.time() - start_time
print(
f"[OK] Loaded {packs_loaded} documents from Warbler packs "
f"({failed} failed) in {total_time:.1f} seconds"
)
# Mark ingestion complete
ingestion_status["running"] = False
SAMPLE_DOCS = [
{
"id": "wisdom_1",
"content": "True wisdom comes from understanding both success and failure. Each setback teaches resilience.",
"metadata": {
"realm_type": "wisdom",
"realm_label": "philosophy",
"lifecycle_stage": "peak",
},
},
{
"id": "wisdom_2",
"content": "Courage is not the absence of fear, but the determination to act despite it.",
"metadata": {
"realm_type": "wisdom",
"realm_label": "virtue",
"lifecycle_stage": "emergence",
},
},
{
"id": "tech_1",
"content": "The Warbler CDA system uses STAT7 addressing for multi-dimensional retrieval.",
"metadata": {
"realm_type": "technical",
"realm_label": "documentation",
"lifecycle_stage": "peak",
},
},
{
"id": "narrative_1",
"content": "In the ancient library, the keeper of memories preserved stories across generations.",
"metadata": {
"realm_type": "narrative",
"realm_label": "lore",
"lifecycle_stage": "crystallization",
},
},
{
"id": "pattern_1",
"content": "Patterns emerge when we observe the connections between seemingly unrelated events.",
"metadata": {
"realm_type": "pattern",
"realm_label": "insight",
"lifecycle_stage": "emergence",
},
},
]
class PackManager:
def __init__(self):
self.cache_dir = Path.home() / ".warbler_cda" / "cache"
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.metadata_file = self.cache_dir / "pack_metadata.json"
self.skip_cache = os.getenv("WARBLER_SKIP_PACK_CACHE", "").lower() == "true"
self.sample_only = os.getenv("WARBLER_SAMPLE_ONLY", "").lower() == "true"
self.ingest_packs = os.getenv("WARBLER_INGEST_PACKS", "true").lower() == "true"
def _load_metadata(self) -> Optional[Dict]:
if not self.metadata_file.exists():
return None
try:
with open(self.metadata_file, "r") as f:
return json.load(f)
except BaseException:
return None
def _save_metadata(self, metadata: Dict):
try:
with open(self.metadata_file, "w") as f:
json.dump(metadata, f, indent=2)
except Exception as e:
print(f"[WARN] Failed to save pack metadata: {e}")
def health_check(self, api, expected_doc_count: int = None) -> bool:
if not api:
return False
try:
current_size = api.get_context_store_size()
if expected_doc_count and current_size < expected_doc_count:
return False
return current_size > 0
except BaseException:
return False
def should_ingest_packs(self, api, pack_count: int) -> bool:
if self.skip_cache or not self.ingest_packs or self.sample_only:
return False
if not self.health_check(api, expected_doc_count=10):
return True
metadata = self._load_metadata()
if not metadata or metadata.get("pack_count") != pack_count:
return True
return False
def mark_packs_ingested(self, pack_count: int, doc_count: int):
metadata = {
"ingested_at": time.time(),
"pack_count": pack_count,
"doc_count": doc_count,
"status": "healthy",
}
self._save_metadata(metadata)
pack_manager = PackManager()
try:
from warbler_cda import (
RetrievalAPI,
SemanticAnchorGraph,
EmbeddingProviderFactory,
STAT7RAGBridge,
RetrievalQuery,
RetrievalMode,
)
from warbler_cda.pack_loader import PackLoader
WARBLER_AVAILABLE = True
except ImportError:
WARBLER_AVAILABLE = False
print("Warning: Warbler CDA not installed. Using mock mode.")
api = None
if WARBLER_AVAILABLE:
try:
embedding_provider = EmbeddingProviderFactory.get_default_provider()
semantic_anchors = SemanticAnchorGraph(embedding_provider=embedding_provider)
stat7_bridge = STAT7RAGBridge()
api = RetrievalAPI(
semantic_anchors=semantic_anchors,
embedding_provider=embedding_provider,
stat7_bridge=stat7_bridge,
config={"enable_stat7_hybrid": True},
)
packs_loaded = 0
if pack_manager.sample_only:
print("[INFO] Loading sample documents only (WARBLER_SAMPLE_ONLY=true)")
for doc in SAMPLE_DOCS:
api.add_document(doc["id"], doc["content"], doc["metadata"])
packs_loaded = len(SAMPLE_DOCS)
print(f"[OK] Loaded {packs_loaded} sample documents")
elif pack_manager.ingest_packs:
from warbler_cda.pack_sync import PackSync
pack_sync = PackSync()
sync_status = pack_sync.get_sync_status()
print(f"[INFO] Pack Status: {sync_status}")
pack_loader = PackLoader()
pack_docs = pack_loader.discover_documents()
if pack_docs and pack_manager.should_ingest_packs(api, len(pack_docs)):
# Start background ingestion
ingestion_thread = threading.Thread(
target=background_ingest_packs, args=(api, pack_docs, pack_manager), daemon=True
)
ingestion_thread.start()
packs_loaded = 0 # Will be updated asynchronously
print(f"[INFO] Started background ingestion of {len(pack_docs)} documents")
elif pack_docs:
packs_loaded = len(pack_docs)
print(f"[INFO] Using cached pack data ({packs_loaded} documents)")
else:
print("[INFO] No Warbler packs found. Using sample documents instead.")
for doc in SAMPLE_DOCS:
api.add_document(doc["id"], doc["content"], doc["metadata"])
packs_loaded = len(SAMPLE_DOCS)
print(f"[OK] Loaded {packs_loaded} sample documents")
context_size = api.get_context_store_size()
print(f"[OK] Total documents in context store: {context_size}")
except Exception as e:
print(f"[ERROR] Failed to initialize Warbler CDA: {e}")
api = None
import traceback
traceback.print_exc()
@spaces.GPU
def query_warbler(
query_text: str,
max_results: int = 5,
use_hybrid: bool = True,
weight_semantic: float = 0.6,
weight_stat7: float = 0.4,
) -> Tuple[str, str]:
"""
Query the Warbler CDA system
Returns:
Tuple of (results_text, metrics_json)
"""
if not WARBLER_AVAILABLE or not api:
return "Warbler CDA not available. Please install the package.", "{}"
if not query_text.strip():
return "Please enter a query.", "{}"
try:
start_time = time.time()
print(f"DEBUG: Context store size: {api.get_context_store_size()}")
# Create query
query = RetrievalQuery(
query_id=f"demo_{int(time.time())}",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query=query_text,
max_results=max_results,
confidence_threshold=0.3,
stat7_hybrid=use_hybrid,
weight_semantic=weight_semantic,
weight_stat7=weight_stat7,
)
print(f"DEBUG: Query created - ID: {query.query_id}, Text: {query_text}")
# Execute query
assembly = api.retrieve_context(query)
print(
f"DEBUG: Retrieved {len(assembly.results)} results, Assembly ID: {assembly.assembly_id}"
)
elapsed_ms = (time.time() - start_time) * 1000
# Format results
results_text = "# Query Results\n\n"
results_text += f"**Query:** {query_text}\n\n"
results_text += (
f"**Mode:** {'Hybrid (Semantic + STAT7)' if use_hybrid else 'Semantic Only'}\n\n"
)
results_text += f"**Results Found:** {len(assembly.results)}\n\n"
results_text += f"**Assembly Quality:** {assembly.assembly_quality:.3f}\n\n"
results_text += f"**Execution Time:** {elapsed_ms:.1f}ms\n\n"
results_text += "---\n\n"
if assembly.results:
for i, result in enumerate(assembly.results, 1):
results_text += f"### Result {i}\n\n"
results_text += f"**Relevance Score:** {result.relevance_score:.3f}\n\n"
if use_hybrid:
results_text += f"- Semantic Similarity: {result.semantic_similarity:.3f}\n"
results_text += f"- STAT7 Resonance: {result.stat7_resonance:.3f}\n\n"
results_text += f"**Content:** {result.content}\n\n"
results_text += f"**Type:** {result.content_type}\n\n"
if result.metadata:
results_text += "**Metadata:**\n"
for key, value in result.metadata.items():
if key != "stat7": # Skip complex STAT7 object
results_text += f"- {key}: {value}\n"
results_text += "\n"
results_text += "---\n\n"
else:
results_text += (
"*No results found. Try adjusting your query or adding more documents.*\n"
)
# Metrics
metrics = {
"query_id": assembly.assembly_id,
"result_count": len(assembly.results),
"total_relevance": assembly.total_relevance,
"assembly_quality": assembly.assembly_quality,
"temporal_span_hours": assembly.temporal_span_hours,
"anchor_coverage": len(assembly.anchor_coverage),
"execution_time_ms": elapsed_ms,
"hybrid_mode": use_hybrid,
}
metrics_json = json.dumps(metrics, indent=2)
return results_text, metrics_json
except Exception as e:
return f"Error: {str(e)}", json.dumps({"error": str(e)}, indent=2)
def add_document(doc_id: str, content: str, realm_type: str, realm_label: str) -> str:
"""Add a new document to the system"""
if not WARBLER_AVAILABLE or not api:
return "Warbler CDA not available."
if not doc_id.strip() or not content.strip():
return "Please provide both document ID and content."
try:
metadata = {
"realm_type": realm_type,
"realm_label": realm_label,
"lifecycle_stage": "emergence",
"activity_level": 0.7,
}
success = api.add_document(doc_id, content, metadata)
if success:
return f"[OK] Document '{doc_id}' added successfully!\n\nTotal documents: {api.get_context_store_size()}"
else:
return f"[ERROR] Document '{doc_id}' already exists."
except Exception as e:
return f"Error: {str(e)}"
def get_system_stats() -> str:
"""Get system statistics"""
if not WARBLER_AVAILABLE or not api:
return "Warbler CDA not available."
try:
metrics = api.get_retrieval_metrics()
stats = "# System Statistics\n\n"
stats += f"**Total Documents:** {metrics['context_store_size']}\n\n"
stats += f"**Total Queries:** {metrics['retrieval_metrics']['total_queries']}\n\n"
stats += f"**Cache Hit Rate:** {metrics['cache_performance']['hit_rate']:.1%}\n\n"
stats += f"**Average Results per Query:** {metrics['retrieval_metrics']['average_results_per_query']:.1f}\n\n"
stats += f"**Average Retrieval Time:** {metrics['retrieval_metrics']['average_retrieval_time_ms']:.1f}ms\n\n"
stats += f"**Hybrid Queries:** {metrics['retrieval_metrics']['hybrid_queries']}\n\n"
stats += "## Quality Distribution\n\n"
for quality, count in metrics["retrieval_metrics"]["quality_distribution"].items():
stats += f"- {quality.capitalize()}: {count}\n"
# Add ingestion status information
global ingestion_status
stats += "\n## Background Pack Ingestion\n\n"
if ingestion_status["running"]:
# Currently ingesting
progress_percent = (ingestion_status["processed"] / ingestion_status["total_docs"] * 100) if ingestion_status["total_docs"] > 0 else 0
eta_minutes = ingestion_status["eta"] / 60 if ingestion_status["eta"] > 0 else 0
stats += "**Status:** 🟢 **ACTIVE** - Ingesting documents...\n\n"
stats += "```\n"
stats += f"Progress: {ingestion_status['processed']}/{ingestion_status['total_docs']} documents\n"
stats += f"Complete: {progress_percent:.1f}%\n"
stats += f"Rate: {ingestion_status['rate']:.1f} docs/sec\n"
stats += f"ETA: {eta_minutes:.1f} minutes\n"
if ingestion_status['failed'] > 0:
stats += f"Failed: {ingestion_status['failed']} documents\n"
stats += "```\n\n"
elif ingestion_status["total_docs"] > 0:
# Completed ingestion (has totals but not running)
stats += "**Status:** ✅ **COMPLETE**\n\n"
stats += f"**Last Ingestion:** Processed {ingestion_status['processed']} documents"
if ingestion_status['failed'] > 0:
stats += f" ({ingestion_status['failed']} failed)"
stats += "\n\n"
else:
# No background ingestion detected
stats += "**Status:** ⚪ **IDLE** - No background ingestion active\n\n"
return stats
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(title="Warbler CDA - RAG System Demo") as demo:
gr.Markdown(
"""
# Warbler CDA - Cognitive Development Architecture
Interactive demo of a production-ready RAG system with **STAT7 multi-dimensional addressing**.
## Features
- **Semantic Search**: Find relevant documents using natural language
- **STAT7 Hybrid Scoring**: Combine semantic similarity with 7-dimensional resonance
- **Real-time Retrieval**: Sub-second query performance
- **Provenance Tracking**: Full lineage and metadata preservation
"""
)
with gr.Tab("Query"):
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="Query",
placeholder="Enter your search query (e.g., 'wisdom about courage')",
lines=2,
)
with gr.Row():
max_results = gr.Slider(
minimum=1, maximum=10, value=5, step=1, label="Max Results"
)
use_hybrid = gr.Checkbox(label="Enable STAT7 Hybrid Scoring", value=True)
with gr.Row():
weight_semantic = gr.Slider(
minimum=0.0, maximum=1.0, value=0.6, step=0.1, label="Semantic Weight"
)
weight_stat7 = gr.Slider(
minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="STAT7 Weight"
)
query_btn = gr.Button("Search", variant="primary")
with gr.Column(scale=1):
gr.Markdown(
"""
### Example Queries
- "wisdom about courage"
- "technical documentation"
- "narrative patterns"
- "ancient knowledge"
- "system architecture"
"""
)
with gr.Row():
results_output = gr.Markdown(label="Results")
with gr.Row():
metrics_output = gr.JSON(label="Metrics")
query_btn.click(
fn=query_warbler,
inputs=[query_input, max_results, use_hybrid, weight_semantic, weight_stat7],
outputs=[results_output, metrics_output],
)
with gr.Tab("Add Document"):
with gr.Row():
with gr.Column():
doc_id_input = gr.Textbox(label="Document ID", placeholder="unique_doc_id")
content_input = gr.Textbox(
label="Content", placeholder="Enter document content...", lines=5
)
with gr.Row():
realm_type_input = gr.Dropdown(
choices=["wisdom", "technical", "narrative", "pattern", "data"],
value="wisdom",
label="Realm Type",
)
realm_label_input = gr.Textbox(
label="Realm Label", placeholder="e.g., philosophy, documentation"
)
add_btn = gr.Button("Add Document", variant="primary")
add_output = gr.Textbox(label="Status", lines=3)
add_btn.click(
fn=add_document,
inputs=[doc_id_input, content_input, realm_type_input, realm_label_input],
outputs=add_output,
)
with gr.Tab("System Stats"):
stats_btn = gr.Button("Refresh Statistics", variant="primary")
stats_output = gr.Markdown()
stats_btn.click(fn=get_system_stats, outputs=stats_output)
# Auto-load stats on tab open
demo.load(fn=get_system_stats, outputs=stats_output)
# Refresh stats every 10 seconds if ingestion is running
def auto_refresh_stats():
while ingestion_status["running"]:
time.sleep(10)
# Note: In Gradio, we can't directly update from background thread
# This would need a more complex setup with queues or websockets
# For now, users can manually refresh
with gr.Tab("About"):
gr.Markdown(
"""
## About Warbler CDA
Warbler CDA (Cognitive Development Architecture) is a production-ready RAG system featuring:
### STAT7 Multi-Dimensional Addressing
Each document is addressed in 7 dimensions:
1. **Realm**: Domain classification
2. **Lineage**: Generation/version
3. **Adjacency**: Connectivity score
4. **Horizon**: Lifecycle stage
5. **Luminosity**: Activity level
6. **Polarity**: Resonance factor
7. **Dimensionality**: Complexity level
### Hybrid Scoring
Combines traditional semantic similarity with STAT7 resonance for superior retrieval:
```
hybrid_score = (0.6 × semantic) + (0.4 × stat7_resonance)
```
### Validated Performance
- **EXP-01**: 0% collision rate across 10K+ entities
- **EXP-02**: Sub-millisecond retrieval at 100K scale
- **EXP-03**: All 7 dimensions proven necessary
- **EXP-10**: Narrative coherence preserved under concurrent load
### Links
- [GitHub Repository](https://github.com/tiny-walnut-games/the-seed)
- [Documentation](https://github.com/tiny-walnut-games/the-seed/blob/main/README.md)
- [PyPI Package](https://pypi.org/project/warbler-cda/)
---
Made with love by Tiny Walnut Games
"""
)
if __name__ == "__main__":
demo.launch()
|