File size: 13,379 Bytes
0ccf2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
Test suite for 8D FractalStat Integration
Tests 8D FractalStat coordinate computation, hybrid scoring, and resonance calculations

Now upgraded from 7D FractalStat to 8D FractalStat with alignment dimension.
"""

import pytest
import sys
from pathlib import Path

sys.path.insert(0, str(Path(__file__).parent.parent))

from warbler_cda.retrieval_api import RetrievalAPI, RetrievalQuery, RetrievalMode
from warbler_cda.embeddings import EmbeddingProviderFactory
from warbler_cda.fractalstat_entity import FractalStatCoordinates, Realm, Horizon, Polarity, Alignment


class TestFractalStatCoordinateComputation:
    """Test FractalStat coordinate computation from embeddings."""

    def setup_method(self):
        """Setup for each test."""
        try:
            from warbler_cda.embeddings.sentence_transformer_provider import (
                SentenceTransformerEmbeddingProvider,
            )

            self.provider = SentenceTransformerEmbeddingProvider()
            self.skip = False
        except ImportError:
            self.skip = True

    def test_fractalstat_from_embedding(self):
        """Test FractalStat coordinate computation from embedding."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        text = "Test document for FractalStat coordinates"
        embedding = self.provider.embed_text(text)

        fractalstat = self.provider.compute_fractalstat_from_embedding(embedding)

        assert "lineage" in fractalstat
        assert "adjacency" in fractalstat
        assert "luminosity" in fractalstat
        assert "polarity" in fractalstat
        assert "dimensionality" in fractalstat
        assert "horizon" in fractalstat
        assert "realm" in fractalstat

    def test_fractalstat_values_in_range(self):
        """Test that FractalStat values are in expected ranges."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        text = "Test text"
        embedding = self.provider.embed_text(text)
        fractalstat = self.provider.compute_fractalstat_from_embedding(embedding)

        # Verify expected ranges for different dimensions:
        # lineage: unbounded positive (energy-based, generation/passage)
        # adjacency: [-1, 1] (semantic connectivity)
        # luminosity: [0, 100] (activity/coherence level)
        # polarity: [-1, 1] (resonance balance)
        # dimensionality: [1, 8] (complexity depth)
        assert fractalstat["lineage"] >= 0.0, "lineage should be non-negative"
        assert -1.0 <= fractalstat["adjacency"] <= 1.0, "adjacency should be between -1 and 1"
        assert 0.0 <= fractalstat["luminosity"] <= 100.0, "luminosity should be between 0 and 100"
        assert -1.0 <= fractalstat["polarity"] <= 1.0, "polarity should be between -1 and 1"
        assert 1 <= fractalstat["dimensionality"] <= 8, "dimensionality should be between 1 and 8"

    def test_different_texts_produce_different_fractalstat(self):
        """Test that different texts produce different FractalStat coordinates."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        text1 = "This is about performance and optimization"
        text2 = "This is completely different about philosophy"

        emb1 = self.provider.embed_text(text1)
        emb2 = self.provider.embed_text(text2)

        fractalstat_1 = self.provider.compute_fractalstat_from_embedding(emb1)
        fractalstat_2 = self.provider.compute_fractalstat_from_embedding(emb2)

        differences = [
            abs(fractalstat_1[key] - fractalstat_2[key])
            for key in ["lineage", "adjacency", "luminosity", "polarity", "dimensionality"]
        ]

        assert any(
            diff > 0.1 for diff in differences
        ), "Different texts should produce different FractalStat"


class TestFractalStatHybridScoring:
    """Test FractalStat hybrid scoring in retrieval."""

    def setup_method(self):
        """Setup for each test."""
        try:
            from warbler_cda.embeddings.sentence_transformer_provider import (
                SentenceTransformerEmbeddingProvider,
            )

            self.provider = SentenceTransformerEmbeddingProvider()
            self.skip = False
        except ImportError:
            self.skip = True

        self.api = RetrievalAPI(
            embedding_provider=(
                self.provider if not self.skip else EmbeddingProviderFactory.get_default_provider()
            ),
            config={"enable_fractalstat_hybrid": True},
        )

    def test_hybrid_scoring_combines_semantic_and_fractalstat(self):
        """Test that hybrid scoring combines semantic and FractalStat components."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        self.api.add_document("doc_1", "Semantic embeddings for document retrieval")
        self.api.add_document("doc_2", "FractalStat hybrid scoring approach")
        self.api.add_document("doc_3", "Machine learning and embeddings")

        query = RetrievalQuery(
            query_id="test_hybrid",
            mode=RetrievalMode.SEMANTIC_SIMILARITY,
            semantic_query="embeddings and scoring",
            max_results=3,
            fractalstat_hybrid=True,
            weight_semantic=0.6,
            weight_fractalstat=0.4,
        )

        assembly = self.api.retrieve_context(query)

        assert assembly is not None
        for result in assembly.results:
            assert hasattr(result, "semantic_similarity")
            assert hasattr(result, "fractalstat_resonance")
            assert hasattr(result, "relevance_score")

    def test_fractalstat_resonance_calculation(self):
        """Test FractalStat resonance calculation."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        doc_fractalstat = {
            "lineage": 0.5,
            "adjacency": 0.6,
            "luminosity": 0.7,
            "polarity": 0.5,
            "dimensionality": 0.4,
            "horizon": "scene",
            "realm": {"type": "semantic", "label": "test"},
        }

        query_fractalstat = {
            "lineage": 0.5,
            "adjacency": 0.5,
            "luminosity": 0.7,
            "polarity": 0.5,
            "dimensionality": 0.4,
            "horizon": "scene",
            "realm": {"type": "semantic", "label": "test"},
        }

        resonance = self.api._calculate_fractalstat_resonance(doc_fractalstat, query_fractalstat)

        assert 0.0 <= resonance <= 1.0
        assert resonance > 0.7, "Similar FractalStat coordinates should have high resonance"

    def test_fractalstat_resonance_with_different_coordinates(self):
        """Test FractalStat resonance with very different coordinates."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        doc_fractalstat = {
            "lineage": 0.1,
            "adjacency": 0.2,
            "luminosity": 0.1,
            "polarity": 0.2,
            "dimensionality": 0.1,
        }

        query_fractalstat = {
            "lineage": 0.9,
            "adjacency": 0.8,
            "luminosity": 0.9,
            "polarity": 0.8,
            "dimensionality": 0.9,
        }

        resonance = self.api._calculate_fractalstat_resonance(doc_fractalstat, query_fractalstat)

        assert 0.0 <= resonance <= 1.0
        assert resonance < 0.4, "Very different FractalStat coordinates should have low resonance"


class TestFractalStatDocumentEnrichment:
    """Test document enrichment with FractalStat coordinates."""

    def setup_method(self):
        """Setup for each test."""
        try:
            from warbler_cda.embeddings.sentence_transformer_provider import (
                SentenceTransformerEmbeddingProvider,
            )

            self.provider = SentenceTransformerEmbeddingProvider()
            self.skip = False
        except ImportError:
            self.skip = True

        self.api = RetrievalAPI(
            embedding_provider=self.provider if not self.skip else None,
            config={"enable_fractalstat_hybrid": True},
        )

    def test_document_enriched_with_embedding(self):
        """Test that documents are enriched with embeddings."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        self.api.add_document("doc_1", "Test document content")

        stored_doc = self.api._context_store["doc_1"]
        assert "embedding" in stored_doc
        assert isinstance(stored_doc["embedding"], list)

    def test_document_enriched_with_fractalstat(self):
        """Test that documents are enriched with FractalStat coordinates."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        self.api.add_document("doc_1", "Test document for FractalStat")

        stored_doc = self.api._context_store["doc_1"]
        assert "fractalstat_coordinates" in stored_doc

        fractalstat = stored_doc["fractalstat_coordinates"]
        assert "lineage" in fractalstat
        assert "adjacency" in fractalstat
        assert "luminosity" in fractalstat
        assert "polarity" in fractalstat
        assert "dimensionality" in fractalstat


class TestFractalStatQueryAddressing:
    """Test FractalStat query addressing for multi-dimensional retrieval."""

    def setup_method(self):
        """Setup for each test."""
        try:
            from warbler_cda.embeddings.sentence_transformer_provider import (
                SentenceTransformerEmbeddingProvider,
            )

            self.provider = SentenceTransformerEmbeddingProvider()
            self.skip = False
        except ImportError:
            self.skip = True

        self.api = RetrievalAPI(
            embedding_provider=(
                self.provider if not self.skip else EmbeddingProviderFactory.get_default_provider()
            ),
            config={"enable_fractalstat_hybrid": True},
        )

    def test_query_with_fractalstat_address(self):
        """Test query with explicit FractalStat address."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        self.api.add_document("doc_1", "Document about optimization")
        self.api.add_document("doc_2", "Document about performance")

        fractalstat_address = {
            "realm": {"type": "technical", "label": "optimization"},
            "lineage": 0.7,
            "adjacency": 0.6,
            "horizon": "scene",
            "luminosity": 0.8,
            "polarity": 0.6,
            "dimensionality": 0.7,
        }

        query = RetrievalQuery(
            query_id="test_fractalstat_query",
            mode=RetrievalMode.SEMANTIC_SIMILARITY,
            semantic_query="performance",
            max_results=5,
            fractalstat_hybrid=True,
            fractalstat_address=fractalstat_address,
        )

        assembly = self.api.retrieve_context(query)

        assert assembly is not None

    def test_default_fractalstat_address_generated(self):
        """Test that default FractalStat address is generated if not provided."""
        query = RetrievalQuery(
            query_id="test_default_fractalstat",
            mode=RetrievalMode.SEMANTIC_SIMILARITY,
            semantic_query="test",
            fractalstat_hybrid=True,
        )

        assert query.fractalstat_address is not None
        assert "lineage" in query.fractalstat_address
        assert "adjacency" in query.fractalstat_address
        assert "luminosity" in query.fractalstat_address
        assert "polarity" in query.fractalstat_address


class TestFractalStatDimensions:
    """Test FractalStat dimensional space properties."""

    def setup_method(self):
        """Setup for each test."""
        try:
            from warbler_cda.embeddings.sentence_transformer_provider import (
                SentenceTransformerEmbeddingProvider,
            )

            self.provider = SentenceTransformerEmbeddingProvider()
            self.skip = False
        except ImportError:
            self.skip = True

    def test_eight_dimensions_in_fractalstat(self):
        """Test that FractalStat provides 8 key dimensions."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        text = "Test for seven dimensions"
        embedding = self.provider.embed_text(text)
        fractalstat = self.provider.compute_fractalstat_from_embedding(embedding)

        expected_dims = [
            "lineage",
            "adjacency",
            "luminosity",
            "polarity",
            "dimensionality",
            "horizon",
            "realm",
        ]
        for dim in expected_dims:
            assert dim in fractalstat, f"FractalStat should contain {dim}"

    def test_fractalstat_realm_structure(self):
        """Test that FractalStat realm has proper structure."""
        if self.skip:
            pytest.skip("SentenceTransformer not installed")

        text = "Test"
        embedding = self.provider.embed_text(text)
        fractalstat = self.provider.compute_fractalstat_from_embedding(embedding)

        realm = fractalstat["realm"]
        assert isinstance(realm, dict)
        assert "type" in realm
        assert "label" in realm


if __name__ == "__main__":
    pytest.main([__file__, "-v"])