File size: 26,029 Bytes
55d584b
0ccf2f0
55d584b
 
 
 
 
ec38897
55d584b
 
ec38897
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
0ccf2f0
55d584b
 
 
 
2133289
 
 
 
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
 
55d584b
 
 
0ccf2f0
55d584b
0ccf2f0
55d584b
0ccf2f0
55d584b
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
2133289
 
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
 
 
55d584b
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
 
 
55d584b
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
 
55d584b
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
 
55d584b
 
 
 
 
 
2133289
 
55d584b
 
 
2133289
 
55d584b
 
 
 
2133289
 
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
55d584b
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
0ccf2f0
55d584b
 
 
 
2133289
55d584b
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
2133289
 
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccf2f0
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
 
 
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133289
55d584b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec38897
 
 
55d584b
 
 
 
 
 
 
 
0ccf2f0
55d584b
0ccf2f0
55d584b
0ccf2f0
55d584b
0ccf2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d584b
 
 
 
 
 
 
 
2133289
55d584b
 
2133289
55d584b
 
 
 
 
 
 
 
 
2133289
55d584b
 
2133289
55d584b
 
 
 
 
 
 
 
0ccf2f0
2133289
 
55d584b
0ccf2f0
55d584b
 
 
 
0ccf2f0
 
55d584b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
"""
Conflict Detector - Semantic Statement Clash Detection.

Detects conflicting or contradictory statements using semantic similarity and
logical opposition analysis for the Cognitive Geo-Thermal Lore Engine v0.3.
"""

from typing import List, Dict, Any, Optional, Set
import time
import hashlib
from dataclasses import dataclass
from enum import Enum


class ConflictType(Enum):
    """Types of conflicts that can be detected."""

    SEMANTIC_OPPOSITION = "semantic_opposition"  # Directly opposing statements
    LOGICAL_CONTRADICTION = "logical_contradiction"  # Logically incompatible
    FACTUAL_INCONSISTENCY = "factual_inconsistency"  # Inconsistent facts
    TEMPORAL_CONFLICT = "temporal_conflict"  # Time-based conflicts
    SCOPE_MISMATCH = "scope_mismatch"  # Different scope/context but conflicting


@dataclass
class ConflictEvidence:
    """Evidence for a detected conflict."""

    statement_a_id: str
    statement_b_id: str
    conflict_type: ConflictType
    confidence_score: float  # 0.0 to 1.0
    semantic_distance: float
    opposition_indicators: List[str]
    context_overlap: float
    detection_timestamp: float

    def get_age_seconds(self) -> float:
        """Get conflict age in seconds."""
        return time.time() - self.detection_timestamp


@dataclass
class StatementFingerprint:
    """Semantic and structural fingerprint of a statement."""

    statement_id: str
    content: str
    embedding: List[float]
    negation_indicators: List[str]
    assertion_strength: float  # How definitive the statement is
    temporal_markers: List[str]
    domain_tags: Set[str]
    creation_timestamp: float


class ConflictDetector:
    """
    Semantic conflict detection system for identifying clashing statements.

    Features:
    - Semantic opposition detection using embeddings
    - Negation and assertion analysis
    - Temporal conflict identification
    - Confidence scoring and evidence collection
    """

    def __init__(self, config: Optional[Dict[str, Any]] = None, embedding_provider=None):
        """Initialize the conflict detector."""
        self.config = config or {}
        self.embedding_provider = embedding_provider

        # Configuration parameters
        self.opposition_threshold = self.config.get("opposition_threshold", 0.7)
        self.semantic_similarity_threshold = self.config.get("semantic_similarity_threshold", 0.8)
        self.min_confidence_score = self.config.get("min_confidence_score", 0.6)
        self.max_statement_age_hours = self.config.get("max_statement_age_hours", 24)

        # Storage
        self.statement_fingerprints: Dict[str, StatementFingerprint] = {}
        self.detected_conflicts: List[ConflictEvidence] = []
        self.conflict_history: List[ConflictEvidence] = []

        # Conflict detection patterns
        self.negation_patterns = [
            "not",
            "no",
            "never",
            "none",
            "nothing",
            "nowhere",
            "isn't",
            "aren't",
            "won't",
            "can't",
            "don't",
            "doesn't",
            "unable",
            "impossible",
            "incorrect",
            "false",
            "wrong",
        ]

        self.assertion_patterns = [
            "always",
            "definitely",
            "certainly",
            "absolutely",
            "must",
            "will",
            "shall",
            "guaranteed",
            "proven",
            "fact",
            "truth",
        ]

        self.temporal_patterns = [
            "before",
            "after",
            "during",
            "when",
            "while",
            "since",
            "until",
            "by",
            "at",
            "on",
            "in",
            "yesterday",
            "today",
            "tomorrow",
            "now",
            "then",
            "later",
            "earlier",
        ]

        # Metrics
        self.metrics = {
            "statements_processed": 0,
            "conflicts_detected": 0,
            "false_positives_resolved": 0,
            "processing_time_ms": 0.0,
            "average_confidence": 0.0,
        }

    def process_statements(self, statements: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Process new statements and detect conflicts with existing statements.

        Args:
            statements: List of statement dicts with 'id', 'text', and optional metadata

        Returns:
            Processing report with new conflicts detected
        """
        start_time = time.time()
        processing_report = {
            "statements_processed": len(statements),
            "new_conflicts": [],
            "fingerprints_created": 0,
            "total_active_statements": 0,
            "conflict_summary": {"high_confidence": 0, "medium_confidence": 0, "low_confidence": 0},
        }

        # Process each statement
        for statement in statements:
            statement_id = statement.get("id", f"stmt_{int(time.time())}")
            content = statement.get("text", "")

            if not content.strip():
                continue

            # Create fingerprint for new statement
            fingerprint = self._create_statement_fingerprint(statement_id, content, statement)
            self.statement_fingerprints[statement_id] = fingerprint
            processing_report["fingerprints_created"] += 1

            # Detect conflicts with existing statements
            conflicts = self._detect_conflicts_for_statement(fingerprint)

            for conflict in conflicts:
                if conflict.confidence_score >= self.min_confidence_score:
                    self.detected_conflicts.append(conflict)
                    processing_report["new_conflicts"].append(
                        {
                            "conflict_id": self._generate_conflict_id(conflict),
                            "statement_a": conflict.statement_a_id,
                            "statement_b": conflict.statement_b_id,
                            "conflict_type": conflict.conflict_type.value,
                            "confidence_score": conflict.confidence_score,
                            "opposition_indicators": conflict.opposition_indicators,
                        }
                    )

                    # Categorize by confidence
                    if conflict.confidence_score >= 0.8:
                        processing_report["conflict_summary"]["high_confidence"] += 1  # type: ignore
                    elif conflict.confidence_score >= 0.6:
                        processing_report["conflict_summary"]["medium_confidence"] += 1  # type: ignore
                    else:
                        processing_report["conflict_summary"]["low_confidence"] += 1  # type: ignore

        # Cleanup old statements
        self._cleanup_old_statements()

        # Update metrics
        elapsed_ms = (time.time() - start_time) * 1000
        self.metrics["statements_processed"] += len(statements)
        self.metrics["conflicts_detected"] += len(processing_report["new_conflicts"])
        self.metrics["processing_time_ms"] += elapsed_ms

        if self.detected_conflicts:
            self.metrics["average_confidence"] = sum(
                c.confidence_score for c in self.detected_conflicts
            ) / len(self.detected_conflicts)

        processing_report["elapsed_ms"] = elapsed_ms
        processing_report["total_active_statements"] = len(self.statement_fingerprints)
        processing_report["total_conflicts_detected"] = len(self.detected_conflicts)

        return processing_report

    def get_conflict_analysis(self, statement_id: str) -> Dict[str, Any]:
        """
        Get detailed conflict analysis for a specific statement.

        Returns conflicts involving the statement and recommendations.
        """
        conflicts_involving_statement = [
            conflict
            for conflict in self.detected_conflicts
            if conflict.statement_a_id == statement_id or conflict.statement_b_id == statement_id
        ]

        if not conflicts_involving_statement:
            return {
                "statement_id": statement_id,
                "conflicts_found": 0,
                "status": "no_conflicts",
                "recommendation": "Statement appears consistent with existing knowledge",
            }

        # Analyze conflict patterns
        conflict_types: Dict[str, int] = {}
        max_confidence: float = 0.0
        opposing_statements: Set[str] = set()

        for conflict in conflicts_involving_statement:
            conflict_type = conflict.conflict_type.value
            conflict_types[conflict_type] = conflict_types.get(conflict_type, 0) + 1
            max_confidence = max(max_confidence, conflict.confidence_score)

            # Add opposing statement
            if conflict.statement_a_id == statement_id:
                opposing_statements.add(conflict.statement_b_id)
            else:
                opposing_statements.add(conflict.statement_a_id)

        # Generate recommendation
        recommendation = self._generate_conflict_recommendation(
            len(conflicts_involving_statement), max_confidence, conflict_types
        )

        return {
            "statement_id": statement_id,
            "conflicts_found": len(conflicts_involving_statement),
            "max_confidence": max_confidence,
            "conflict_types": conflict_types,
            "opposing_statements": list(opposing_statements),
            "status": "conflicts_detected" if conflicts_involving_statement else "no_conflicts",
            "recommendation": recommendation,
            "detailed_conflicts": [
                {
                    "opposing_statement": (
                        conflict.statement_b_id
                        if conflict.statement_a_id == statement_id
                        else conflict.statement_a_id
                    ),
                    "conflict_type": conflict.conflict_type.value,
                    "confidence": conflict.confidence_score,
                    "evidence": conflict.opposition_indicators,
                    "age_seconds": conflict.get_age_seconds(),
                }
                for conflict in conflicts_involving_statement
            ],
        }

    def get_global_conflict_summary(self) -> Dict[str, Any]:
        """Get summary of all conflicts in the system."""
        if not self.detected_conflicts:
            return {
                "total_conflicts": 0,
                "conflict_types": {},
                "confidence_distribution": {"high": 0, "medium": 0, "low": 0},
                "recent_conflicts_1h": 0,
                "status": "healthy",
                "system_health_score": 1.0,
                "recommendations": ["Continue monitoring for new conflicts"],
                "metrics": self.metrics.copy(),
            }

        # Analyze conflict distribution
        conflict_types: Dict[str, int] = {}
        confidence_distribution: Dict[str, int] = {"high": 0, "medium": 0, "low": 0}
        recent_conflicts: int = 0

        for conflict in self.detected_conflicts:
            # Count by type
            conflict_type = conflict.conflict_type.value
            conflict_types[conflict_type] = conflict_types.get(conflict_type, 0) + 1

            # Count by confidence
            if conflict.confidence_score >= 0.8:
                confidence_distribution["high"] += 1
            elif conflict.confidence_score >= 0.6:
                confidence_distribution["medium"] += 1
            else:
                confidence_distribution["low"] += 1

            # Count recent conflicts (last hour)
            if conflict.get_age_seconds() < 3600:
                recent_conflicts += 1

        # Determine system health
        high_confidence_conflicts: int = confidence_distribution["high"]
        status: str = "healthy"
        if high_confidence_conflicts > 5:
            status = "critical"
        elif high_confidence_conflicts > 2:
            status = "warning"
        elif confidence_distribution["medium"] + confidence_distribution["low"] > 10:
            status = "monitoring"
        else:
            status = "healthy"

        health_score = self._calculate_health_score()
        recommendations = self._generate_system_recommendations(status, conflict_types)

        return {
            "total_conflicts": len(self.detected_conflicts),
            "conflict_types": conflict_types,
            "confidence_distribution": confidence_distribution,
            "recent_conflicts_1h": recent_conflicts,
            "status": status,
            "system_health_score": health_score,
            "recommendations": recommendations,
            "metrics": self.metrics.copy(),
        }

    def resolve_conflict(self, conflict_id: str, resolution: str) -> bool:
        """
        Mark a conflict as resolved with explanation.

        Args:
            conflict_id: ID of conflict to resolve
            resolution: Explanation of how conflict was resolved

        Returns:
            True if conflict was found and resolved
        """
        # Note: resolution parameter is kept for API consistency, may be used in future logging
        for i, conflict in enumerate(self.detected_conflicts):
            if self._generate_conflict_id(conflict) == conflict_id:
                # Move to history
                resolved_conflict = conflict
                self.conflict_history.append(resolved_conflict)
                self.detected_conflicts.pop(i)
                self.metrics["false_positives_resolved"] += 1
                return True
        return False

    def _create_statement_fingerprint(
        self, statement_id: str, content: str, metadata: Dict[str, Any]
    ) -> StatementFingerprint:
        """Create semantic and structural fingerprint for a statement."""
        # Generate embedding if provider available
        embedding = []
        if self.embedding_provider:
            try:
                embedding = self.embedding_provider.embed_text(content, metadata)
            except Exception: # pylint: disable=broad-except
                # Fallback to empty embedding
                pass

        # Detect negation indicators
        content_lower = content.lower()
        negation_indicators = [
            pattern for pattern in self.negation_patterns if pattern in content_lower
        ]

        # Calculate assertion strength
        assertion_indicators = [
            pattern for pattern in self.assertion_patterns if pattern in content_lower
        ]
        assertion_strength = min(len(assertion_indicators) * 0.2, 1.0)

        # Extract temporal markers
        temporal_markers = [
            pattern for pattern in self.temporal_patterns if pattern in content_lower
        ]

        # Extract domain tags (simple keyword-based)
        domain_tags = set()
        if "debug" in content_lower or "development" in content_lower:
            domain_tags.add("development")
        if "memory" in content_lower or "storage" in content_lower:
            domain_tags.add("memory")
        if "process" in content_lower or "algorithm" in content_lower:
            domain_tags.add("processing")
        if "semantic" in content_lower or "meaning" in content_lower:
            domain_tags.add("semantics")

        return StatementFingerprint(
            statement_id=statement_id,
            content=content,
            embedding=embedding,
            negation_indicators=negation_indicators,
            assertion_strength=assertion_strength,
            temporal_markers=temporal_markers,
            domain_tags=domain_tags,
            creation_timestamp=time.time(),
        )

    def _detect_conflicts_for_statement(
        self, new_fingerprint: StatementFingerprint
    ) -> List[ConflictEvidence]:
        """Detect conflicts between new statement and existing statements."""
        conflicts = []

        for existing_id, existing_fingerprint in self.statement_fingerprints.items():
            if existing_id == new_fingerprint.statement_id:
                continue  # Don't compare with self

            # Check for semantic opposition
            if (
                self.embedding_provider
                and new_fingerprint.embedding
                and existing_fingerprint.embedding
            ):
                similarity = self.embedding_provider.calculate_similarity(
                    new_fingerprint.embedding, existing_fingerprint.embedding
                )

                # High semantic similarity with negation indicators suggests opposition
                if similarity > self.semantic_similarity_threshold:
                    opposition_score = self._calculate_opposition_score(
                        new_fingerprint, existing_fingerprint
                    )

                    if opposition_score > self.opposition_threshold:
                        # Calculate context overlap
                        context_overlap = len(
                            new_fingerprint.domain_tags & existing_fingerprint.domain_tags
                        ) / max(
                            len(new_fingerprint.domain_tags | existing_fingerprint.domain_tags), 1
                        )

                        # Collect opposition evidence
                        opposition_indicators: List[str] = []
                        if (
                            new_fingerprint.negation_indicators
                            and not existing_fingerprint.negation_indicators
                        ):
                            opposition_indicators.extend(new_fingerprint.negation_indicators)
                        elif (
                            existing_fingerprint.negation_indicators
                            and not new_fingerprint.negation_indicators
                        ):
                            opposition_indicators.extend(existing_fingerprint.negation_indicators)

                        # Determine conflict type
                        conflict_type = self._determine_conflict_type(
                            new_fingerprint, existing_fingerprint
                        )

                        # Calculate confidence score
                        confidence = self._calculate_confidence_score(
                            similarity, opposition_score, context_overlap, opposition_indicators
                        )

                        if confidence >= self.min_confidence_score:
                            conflict = ConflictEvidence(
                                statement_a_id=new_fingerprint.statement_id,
                                statement_b_id=existing_fingerprint.statement_id,
                                conflict_type=conflict_type,
                                confidence_score=confidence,
                                semantic_distance=1.0 - similarity,
                                opposition_indicators=opposition_indicators,
                                context_overlap=context_overlap,
                                detection_timestamp=time.time(),
                            )
                            conflicts.append(conflict)

        return conflicts

    def _calculate_opposition_score(
        self, fp1: StatementFingerprint, fp2: StatementFingerprint
    ) -> float:
        """Calculate how much two statements oppose each other."""
        score: float = 0.0

        # Negation opposition (one has negation, other doesn't)
        if (fp1.negation_indicators and not fp2.negation_indicators) or (
            fp2.negation_indicators and not fp1.negation_indicators
        ):
            score += 0.4

        # Strong assertion differences
        assertion_diff = abs(fp1.assertion_strength - fp2.assertion_strength)
        if assertion_diff > 0.5:
            score += 0.3

        # Temporal conflicts
        if fp1.temporal_markers and fp2.temporal_markers:
            # Simple temporal conflict detection
            if any(marker in ["before", "earlier"] for marker in fp1.temporal_markers) and any(
                marker in ["after", "later"] for marker in fp2.temporal_markers
            ):
                score += 0.3

        return min(score, 1.0)

    def _determine_conflict_type(
        self, fp1: StatementFingerprint, fp2: StatementFingerprint
    ) -> ConflictType:
        """Determine the type of conflict between two statements."""
        # Check for semantic opposition
        if (fp1.negation_indicators and not fp2.negation_indicators) or (
            fp2.negation_indicators and not fp1.negation_indicators
        ):
            return ConflictType.SEMANTIC_OPPOSITION

        # Check for temporal conflicts
        if fp1.temporal_markers and fp2.temporal_markers:
            return ConflictType.TEMPORAL_CONFLICT

        # Check for logical contradiction (high assertion strength difference)
        if abs(fp1.assertion_strength - fp2.assertion_strength) > 0.6:
            return ConflictType.LOGICAL_CONTRADICTION

        # Default to factual inconsistency
        return ConflictType.FACTUAL_INCONSISTENCY

    def _calculate_confidence_score(
        self,
        similarity: float,
        opposition_score: float,
        context_overlap: float,
        indicators: List[str],
    ) -> float:
        """Calculate confidence score for a conflict detection."""
        base_score = (similarity * 0.4) + (opposition_score * 0.4) + (context_overlap * 0.2)

        # Boost confidence if we have clear opposition indicators
        indicator_boost = min(len(indicators) * 0.1, 0.2)

        return min(base_score + indicator_boost, 1.0)

    def _cleanup_old_statements(self):
        """Remove old statements that exceed the maximum age."""
        current_time = time.time()
        max_age_seconds = self.max_statement_age_hours * 3600

        old_statement_ids = [
            stmt_id
            for stmt_id, fingerprint in self.statement_fingerprints.items()
            if current_time - fingerprint.creation_timestamp > max_age_seconds
        ]

        for stmt_id in old_statement_ids:
            del self.statement_fingerprints[stmt_id]

        # Also cleanup old conflicts
        self.detected_conflicts = [
            conflict
            for conflict in self.detected_conflicts
            if current_time - conflict.detection_timestamp < max_age_seconds
        ]

    def _generate_conflict_id(self, conflict: ConflictEvidence) -> str:
        """Generate unique ID for a conflict."""
        content = (
            f"{conflict.statement_a_id}_{conflict.statement_b_id}_{conflict.conflict_type.value}"
        )
        return hashlib.md5(content.encode()).hexdigest()[:12]

    def _generate_conflict_recommendation(
        self, conflict_count: int, max_confidence: float, conflict_types: Dict[str, int]
    ) -> str:
        if conflict_count == 0:
            return "No conflicts detected - statement appears consistent"

        # Generate base recommendation based on confidence
        if max_confidence > 0.9:
            recommendation = f"{conflict_count} high confidence conflicts detected - review required"
        elif max_confidence > 0.7:
            recommendation = f"{conflict_count} moderate conflicts detected - verify statement accuracy"
        else:
            recommendation = f"{conflict_count} low confidence conflicts - monitor for patterns"

        # Add type-specific guidance
        semantic_oppositions = conflict_types.get("semantic_opposition", 0)
        temporal_conflicts = conflict_types.get("temporal_conflict", 0)

        advice_parts = []
        if semantic_oppositions > conflict_count // 2:
            advice_parts.append("check for negation errors")
        if temporal_conflicts > conflict_count // 2:
            advice_parts.append("verify timeline consistency")

        if advice_parts:
            recommendation += f" ({'; '.join(advice_parts)})"

        return recommendation

    def _generate_system_recommendations(
        self, status: str, conflict_types: Dict[str, int]
    ) -> List[str]:
        """Generate system-level recommendations."""
        recommendations = []

        if status == "critical":
            recommendations.append("Immediate review required - multiple high-confidence conflicts")
            recommendations.append("Consider statement validation workflow")
        elif status == "warning":
            recommendations.append("Monitor conflicts closely - elevated conflict level")
            recommendations.append("Review recent statements for accuracy")

        # Type-specific recommendations
        if conflict_types.get("semantic_opposition", 0) > 3:
            recommendations.append(
                "Multiple semantic oppositions detected - check for negation errors"
            )

        if conflict_types.get("temporal_conflict", 0) > 2:
            recommendations.append("Temporal conflicts detected - verify timeline consistency")

        if not recommendations:
            recommendations.append("System operating normally - continue monitoring")

        return recommendations

    def _calculate_health_score(self) -> float:
        """Calculate overall system health score (0.0 to 1.0)."""
        if not self.detected_conflicts:
            return 1.0

        high_confidence_conflicts: int = sum(
            1 for conflict in self.detected_conflicts if conflict.confidence_score > 0.8
        )

        total_statements: int = len(self.statement_fingerprints)
        if total_statements == 0:
            return 1.0

        # Health score decreases with conflict ratio
        conflict_ratio: float = len(self.detected_conflicts) / total_statements
        high_confidence_penalty: float = float(high_confidence_conflicts) * 0.1

        health_score = 1.0 - min(conflict_ratio + high_confidence_penalty, 0.9)
        return max(health_score, 0.1)  # Minimum 0.1 health score