Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,125 Bytes
0ccf2f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
"""
Shared utilities for FractalStat validation experiments.
Successor to fractalstat with improved expressivity (100% vs 95%).
Added 8th dimension: 'alignment' for social/coordination dynamics.
Features:
- Hybrid encoding (maps legacy systems to FractalStat coordinates)
- Backward compatibility with existing pets/badges/entities
- LUCA-adjacent bootstrap tracing
- Deterministic coordinate assignment
- Entanglement detection and management
"""
from dataclasses import dataclass, field
from datetime import datetime, timezone
from enum import Enum
from typing import Dict, List, Optional, Any, Tuple
from pathlib import Path
import json
import uuid
import hashlib
from abc import ABC, abstractmethod
import secrets
import random
from decimal import Decimal, ROUND_HALF_EVEN
def _utc_now() -> datetime:
"""Helper function for timezone-aware UTC datetime."""
return datetime.now(timezone.utc)
# ============================================================================
# FractalStat Dimension Enums
# ============================================================================
class Realm(Enum):
"""Domain classification for FractalStat entities"""
COMPANION = "companion" # Pets, familiars, companions
BADGE = "badge" # Achievement badges
SPONSOR_RING = "sponsor_ring" # Sponsor tier badges
ACHIEVEMENT = "achievement" # Generic achievements
PATTERN = "pattern" # System patterns
FACULTY = "faculty" # Faculty-exclusive entities
TEMPORAL = "temporal" # Time-based entities
VOID = "void" # Null/empty realm
class Horizon(Enum):
"""Lifecycle stage in entity progression"""
GENESIS = "genesis" # Entity created, initial state
EMERGENCE = "emergence" # Entity becoming active
PEAK = "peak" # Entity at maximum activity
DECAY = "decay" # Entity waning
CRYSTALLIZATION = "crystallization" # Entity settled/permanent
ARCHIVED = "archived" # Historical record
class Polarity(Enum):
"""Resonance/affinity classification"""
# Companion polarities (elemental)
LOGIC = "logic"
CREATIVITY = "creativity"
ORDER = "order"
CHAOS = "chaos"
BALANCE = "balance"
# Badge polarities (category)
ACHIEVEMENT = "achievement"
CONTRIBUTION = "contribution"
COMMUNITY = "community"
TECHNICAL = "technical"
CREATIVE = "creative"
UNITY = "unity" # Special for sponsor rings
# Neutral
VOID = "void"
class Alignment(Enum):
"""Social and coordination dynamics alignment"""
# Classical alignment system (inspired by fantasy RPGs) - Law vs Chaos
LAWFUL_GOOD = "lawful_good" # Principled, helpful
NEUTRAL_GOOD = "neutral_good" # Helpful, flexible
CHAOTIC_GOOD = "chaotic_good" # Helpful, unconstrained
LAWFUL_NEUTRAL = "lawful_neutral" # Principled, pragmatic
TRUE_NEUTRAL = "true_neutral" # Balanced, pragmatic
CHAOTIC_NEUTRAL = "chaotic_neutral" # Flexible, pragmatic
LAWFUL_EVIL = "lawful_evil" # Principled, harmful
NEUTRAL_EVIL = "neutral_evil" # Self-serving
CHAOTIC_EVIL = "chaotic_evil" # Harmful, unconstrained
# Special classifications for FractalStat
HARMONIC = "harmonic" # Naturally coordinated
ENTROPIC = "entropic" # Naturally disruptive
SYMBIOTIC = "symbiotic" # Mutually beneficial connections
# ============================================================================
# FractalStat Coordinate Data Class (8 Dimensions)
# ============================================================================
@dataclass
class FractalStatCoordinates:
"""
8-dimensional addressing space for all entities with 100% expressivity.
Each dimension represents a different axis of entity existence:
1. Realm: Domain/type classification
2. Lineage: Generation or tier progression from LUCA
3. Adjacency: Semantic/functional proximity score (0-100)
4. Horizon: Lifecycle stage
5. Luminosity: Activity level (0-100)
6. Polarity: Resonance/affinity type
7. Dimensionality: Fractal depth / detail level
8. Alignment: Social/coordination dynamics (NEW - 100% expressivity boost)
"""
realm: Realm # Domain classification
lineage: int # 0-based generation from LUCA
adjacency: float # 0-100 proximity score
horizon: Horizon # lifecycle stage
luminosity: float # 0-100 activity level
polarity: Polarity # resonance/affinity type
dimensionality: int # 0+ fractal depth
alignment: Alignment # 8th dimension for social dynamics
@property
def address(self) -> str:
"""Generate canonical FractalStat address string"""
return f"FractalStat-{self.realm.value[0].upper()}-{self.lineage:03d}-{int(self.adjacency):02d}-{self.horizon.value[0].upper()}-{int(self.luminosity):02d}-{self.polarity.value[0].upper()}-{self.dimensionality}-{self.alignment.value[0].upper()}"
@staticmethod
def from_address(address: str) -> "FractalStatCoordinates":
"""Parse FractalStat address back to coordinates"""
# Format: FractalStat-R-LLL-AA-H-LL-P-D-A (9 parts total)
parts = address.split("-")
if len(parts) != 9 or parts[0] != "FractalStat":
raise ValueError(f"Invalid FractalStat address: {address}")
realm_map = {r.value[0].upper(): r for r in Realm}
horizon_map = {h.value[0].upper(): h for h in Horizon}
polarity_map = {p.value[0].upper(): p for p in Polarity}
alignment_map = {a.value[0].upper(): a for a in Alignment}
try:
return FractalStatCoordinates(
realm=realm_map[parts[1]],
lineage=int(parts[2]),
adjacency=float(parts[3]),
horizon=horizon_map[parts[4]],
luminosity=float(parts[5]),
polarity=polarity_map[parts[6]],
dimensionality=int(parts[7]),
alignment=alignment_map[parts[8]],
)
except (KeyError, ValueError) as e:
raise ValueError(f"Invalid FractalStat address: {address}") from e
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization"""
return {
"realm": self.realm.value,
"lineage": self.lineage,
"adjacency": self.adjacency,
"horizon": self.horizon.value,
"luminosity": self.luminosity,
"polarity": self.polarity.value,
"dimensionality": self.dimensionality,
"alignment": self.alignment.value,
"address": self.address,
}
# ============================================================================
# Lifecycle Event Tracking
# ============================================================================
@dataclass
class LifecycleEvent:
"""Record of significant moments in entity history"""
timestamp: datetime
event_type: str # "birth", "evolution", "mint", etc.
description: str
metadata: Dict[str, Any] = field(default_factory=dict)
def to_dict(self) -> Dict[str, Any]:
return {
"timestamp": self.timestamp.isoformat(),
"event_type": self.event_type,
"description": self.description,
"metadata": self.metadata,
}
# ============================================================================
# FractalStat Entity Base Class
# ============================================================================
@dataclass
class FractalStatEntity(ABC):
"""
Abstract base class for all FractalStat-addressed entities.
8-dimensional successor to fractalstat with enhanced expressivity.
Provides:
- Hybrid encoding (bridge between legacy and FractalStat systems)
- 8D coordinate assignment
- Entanglement tracking
- Temporal tracking
- NFT metadata
"""
# Identity
entity_id: str = field(default_factory=lambda: str(uuid.uuid4()))
entity_type: str = "" # Overridden in subclasses
# FractalStat Addressing (8D)
fractalstat: Optional[FractalStatCoordinates] = None
# Legacy Fields (backward compatibility)
legacy_data: Dict[str, Any] = field(default_factory=dict)
migration_source: Optional[str] = None # "pet", "badge", etc.
# NFT Status
nft_minted: bool = False
nft_contract: Optional[str] = None
nft_token_id: Optional[int] = None
nft_metadata_ipfs: Optional[str] = None
# Entanglement
entangled_entities: List[str] = field(default_factory=list)
entanglement_strength: List[float] = field(default_factory=list)
# Temporal
created_at: datetime = field(default_factory=_utc_now)
last_activity: datetime = field(default_factory=_utc_now)
lifecycle_events: List[LifecycleEvent] = field(default_factory=list)
# Owner/User
owner_id: str = ""
# User Preferences
opt_in_fractalstat_nft: bool = True # Renamed from opt_in_fractalstat_nft
opt_in_blockchain: bool = False
preferred_zoom_level: int = 1 # Default display level
def __post_init__(self):
"""Initialize FractalStat coordinates if not provided"""
if self.fractalstat is None:
self.fractalstat = self._compute_fractalstat_coordinates()
self._record_event("genesis", "Entity initialized in FractalStat space")
# ========================================================================
# Abstract Methods (Implemented by Subclasses)
# ========================================================================
@abstractmethod
def _compute_fractalstat_coordinates(self) -> FractalStatCoordinates:
"""
Compute 8D FractalStat coordinates from entity data.
Each subclass defines its own coordinate mapping.
"""
@abstractmethod
def to_collectible_card_data(self) -> Dict[str, Any]:
"""Convert entity to collectible card display format"""
@abstractmethod
def validate_hybrid_encoding(self) -> Tuple[bool, str]:
"""
Validate that FractalStat coordinates correctly encode legacy data.
Returns (is_valid, error_message_or_empty_string)
"""
# ========================================================================
# Event Tracking
# ========================================================================
def _record_event(
self,
event_type: str,
description: str,
metadata: Optional[Dict[str, Any]] = None,
):
"""Record a lifecycle event"""
event = LifecycleEvent(
timestamp=datetime.now(timezone.utc),
event_type=event_type,
description=description,
metadata=metadata or {},
)
self.lifecycle_events.append(event)
self.last_activity = event.timestamp
def get_event_history(self, limit: Optional[int] = None) -> List[LifecycleEvent]:
"""Get lifecycle events, optionally limited to most recent"""
events = sorted(self.lifecycle_events, key=lambda e: e.timestamp, reverse=True)
return events[:limit] if limit else events
# ========================================================================
# Entanglement Management
# ========================================================================
def add_entanglement(self, other_entity_id: str, strength: float = 1.0):
"""
Link to another entity via resonance/entanglement.
Strength: 0-1.0 (1.0 = maximum entanglement)
"""
if other_entity_id not in self.entangled_entities:
self.entangled_entities.append(other_entity_id)
self.entanglement_strength.append(strength)
self._record_event(
"entanglement_added",
f"Entangled with {other_entity_id}",
{"strength": strength},
)
def remove_entanglement(self, other_entity_id: str):
"""Remove entanglement with another entity"""
if other_entity_id in self.entangled_entities:
idx = self.entangled_entities.index(other_entity_id)
self.entangled_entities.pop(idx)
self.entanglement_strength.pop(idx)
self._record_event(
"entanglement_removed", f"Untangled from {other_entity_id}"
)
def get_entanglements(self) -> List[Tuple[str, float]]:
"""Get all entangled entities with strength"""
return list(zip(self.entangled_entities, self.entanglement_strength))
def update_entanglement_strength(self, other_entity_id: str, new_strength: float):
"""Update entanglement strength with another entity"""
if other_entity_id in self.entangled_entities:
idx = self.entangled_entities.index(other_entity_id)
old_strength = self.entanglement_strength[idx]
self.entanglement_strength[idx] = new_strength
self._record_event(
"entanglement_updated",
f"Entanglement strength changed {old_strength:.2f} -> {new_strength:.2f}",
)
# ========================================================================
# LUCA Bootstrap
# ========================================================================
@property
def luca_distance(self) -> int:
"""Distance from LUCA (Last Universal Common Ancestor)"""
if self.fractalstat is None:
raise ValueError("fractalstat coordinates must be initialized")
return self.fractalstat.lineage
def get_luca_trace(self) -> Dict[str, Any]:
"""
Get path back to LUCA bootstrap origin.
In a real system, this would trace parent entities.
"""
if self.fractalstat is None:
raise ValueError("fractalstat coordinates must be initialized")
return {
"entity_id": self.entity_id,
"luca_distance": self.luca_distance,
"realm": self.fractalstat.realm.value,
"lineage": self.fractalstat.lineage,
"created_at": self.created_at.isoformat(),
"migration_source": self.migration_source,
"event_count": len(self.lifecycle_events),
}
# ========================================================================
# NFT Integration
# ========================================================================
def prepare_for_minting(self) -> Dict[str, Any]:
"""
Generate NFT metadata for minting.
Returns ERC-721/ERC-1155 compatible metadata object.
"""
if not self.opt_in_fractalstat_nft:
raise ValueError("Entity not opted in to FractalStat-NFT system")
if self.fractalstat is None:
raise ValueError("fractalstat coordinates must be initialized")
card_data = self.to_collectible_card_data()
return {
"name": card_data.get("title", self.entity_id),
"description": card_data.get("fluff_text", ""),
"image": card_data.get("artwork_url", ""),
"external_url": f"https://theseed.example.com/entity/{self.entity_id}",
"attributes": [
{"trait_type": "Entity Type", "value": self.entity_type},
{"trait_type": "Realm", "value": self.fractalstat.realm.value},
{"trait_type": "Lineage", "value": self.fractalstat.lineage},
{"trait_type": "Horizon", "value": self.fractalstat.horizon.value},
{
"trait_type": "Luminosity",
"value": int(self.fractalstat.luminosity),
},
{"trait_type": "Polarity", "value": self.fractalstat.polarity.value},
{
"trait_type": "Dimensionality",
"value": self.fractalstat.dimensionality,
},
{"trait_type": "Alignment", "value": self.fractalstat.alignment.value},
{
"trait_type": "FractalStat Address",
"value": self.fractalstat.address,
},
],
"properties": card_data.get("properties", {}),
}
def record_mint(self, contract_address: str, token_id: int, ipfs_hash: str):
"""Record successful NFT minting"""
self.nft_minted = True
self.nft_contract = contract_address
self.nft_token_id = token_id
self.nft_metadata_ipfs = ipfs_hash
self._record_event(
"nft_minted",
f"Minted as ERC-721 token #{token_id}",
{
"contract": contract_address,
"token_id": token_id,
"ipfs_hash": ipfs_hash,
},
)
# ========================================================================
# Serialization
# ========================================================================
def to_dict(self) -> Dict[str, Any]:
"""Convert entity to dictionary for JSON storage"""
return {
"entity_id": self.entity_id,
"entity_type": self.entity_type,
"fractalstat": self.fractalstat.to_dict() if self.fractalstat else None,
"legacy_data": self.legacy_data,
"migration_source": self.migration_source,
"nft_minted": self.nft_minted,
"nft_contract": self.nft_contract,
"nft_token_id": self.nft_token_id,
"nft_metadata_ipfs": self.nft_metadata_ipfs,
"entangled_entities": self.entangled_entities,
"entanglement_strength": self.entanglement_strength,
"created_at": self.created_at.isoformat(),
"last_activity": self.last_activity.isoformat(),
"lifecycle_events": [e.to_dict() for e in self.lifecycle_events],
"owner_id": self.owner_id,
"opt_in_fractalstat_nft": self.opt_in_fractalstat_nft,
"opt_in_blockchain": self.opt_in_blockchain,
"preferred_zoom_level": self.preferred_zoom_level,
}
def save_to_file(self, path: Path):
"""Persist entity to JSON file"""
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
json.dump(self.to_dict(), f, indent=2, default=str)
@classmethod
def load_from_file(cls, path: Path) -> "FractalStatEntity":
"""Load entity from JSON file (must know concrete type)"""
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
entity_type = data.get("entity_type", "unknown")
raise NotImplementedError(
f"Use subclass load methods (detected entity_type: {entity_type}). "
"Use factory pattern to instantiate correct subclass."
)
# ========================================================================
# Display Levels
# ========================================================================
def render_zoom_level(self, level: int) -> Dict[str, Any]:
"""
Render entity at specific zoom level.
Level 1: Badge (20x20px icon)
Level 2: Dog-tag (100x150px micro-card)
Level 3: Collectible Card (300x400px full card)
Level 4: Profile panel (350x500px interactive)
Level 5: Entity profile page (full details)
Level 6+: Fractal descent (dimension breakdown)
"""
if level < 1 or level > 8: # Increased max zoom level for 8D
raise ValueError(f"Invalid zoom level: {level}")
if self.fractalstat is None:
raise ValueError("FractalStat coordinates must be initialized")
card_data = self.to_collectible_card_data()
base = {
"zoom_level": level,
"entity_id": self.entity_id,
"fractalstat_address": self.fractalstat.address,
"created_at": self.created_at.isoformat(),
}
if level == 1:
# Badge: Just icon + rarity
return {
**base,
"type": "badge",
"icon": card_data.get("icon_url"),
"rarity": card_data.get("rarity"),
}
elif level == 2:
# Dog-tag: Icon, title, key stats
return {
**base,
"type": "dog_tag",
"icon": card_data.get("icon_url"),
"title": card_data.get("title"),
"stats": card_data.get("key_stats"),
}
elif level == 3:
# Full card
return {**base, "type": "collectible_card", **card_data}
elif level == 4:
# Profile panel
return {
**base,
"type": "profile_panel",
**card_data,
"owner": self.owner_id,
"entangled_count": len(self.entangled_entities),
"events": len(self.lifecycle_events),
}
elif level == 5:
# Full profile page
return {
**base,
"type": "entity_profile",
**card_data,
"owner": self.owner_id,
"lifecycle_events": [e.to_dict() for e in self.lifecycle_events],
"entanglements": self.get_entanglements(),
"luca_trace": self.get_luca_trace(),
}
elif level == 6:
# 8th dimension awareness
return {
**base,
"type": "fractal_descent",
"fractalstat_dimensions": self.fractalstat.to_dict(),
"alignment_dynamics": self._get_alignment_details(),
"realm_details": self._get_realm_details(),
"entanglement_network": self.get_entanglements(),
"event_chronology": [e.to_dict() for e in self.lifecycle_events],
"luca_trace": self.get_luca_trace(),
}
else: # level 7+
# Full fractal descent with 8D awareness
return {
**base,
"type": "fractal_descent",
"fractalstat_dimensions": self.fractalstat.to_dict(),
"alignment_dynamics": self._get_alignment_details(),
"realm_details": self._get_realm_details(),
"entanglement_network": self.get_entanglements(),
"event_chronology": [e.to_dict() for e in self.lifecycle_events],
"luca_trace": self.get_luca_trace(),
}
def _get_realm_details(self) -> Dict[str, Any]:
"""Override in subclasses to provide realm-specific details"""
return {}
def _get_alignment_details(self) -> Dict[str, Any]:
"""Get alignment-based social/coordination analysis"""
if self.fractalstat is None:
return {}
alignment = self.fractalstat.alignment
# Analyze social coordination patterns based on alignment
coordination_style = {
Alignment.LAWFUL_GOOD: "structured_harmonious",
Alignment.NEUTRAL_GOOD: "balanced_harmonious",
Alignment.CHAOTIC_GOOD: "flexible_harmonious",
Alignment.LAWFUL_NEUTRAL: "structured_pragmatic",
Alignment.TRUE_NEUTRAL: "balanced_pragmatic",
Alignment.CHAOTIC_NEUTRAL: "flexible_pragmatic",
Alignment.LAWFUL_EVIL: "structured_destructive",
Alignment.NEUTRAL_EVIL: "balanced_destructive",
Alignment.CHAOTIC_EVIL: "flexible_destructive",
Alignment.HARMONIC: "naturally_coordinating",
Alignment.ENTROPIC: "naturally_disruptive",
Alignment.SYMBIOTIC: "mutually_beneficial",
}.get(alignment, "unknown")
return {
"alignment": alignment.value,
"coordination_style": coordination_style,
"social_dynamics": self._analyze_social_dynamics(),
}
def _analyze_social_dynamics(self) -> Dict[str, Any]:
"""Analyze social interaction patterns based on entanglement and alignment"""
if self.fractalstat is None:
return {}
# Simplified social analysis based on alignment
alignment = self.fractalstat.alignment
if alignment in [Alignment.LAWFUL_GOOD, Alignment.HARMONIC]:
social_pattern = "coordinating_harmonious"
elif alignment in [Alignment.CHAOTIC_EVIL, Alignment.ENTROPIC]:
social_pattern = "disruptive_chaotic"
else:
social_pattern = "pragmatic_balanced"
return {
"social_pattern": social_pattern,
"entanglement_quality": len(self.entangled_entities)
* 0.1, # Simplified metric
"coordination_potential": self._calculate_coordination_potential(),
}
def _calculate_coordination_potential(self) -> float:
"""Calculate coordination potential based on alignment and entanglements"""
# Simplified calculation - would be more sophisticated in production
base_potential = len(self.entangled_entities) * 0.1
# Alignment modifiers
alignment_bonus = {
Alignment.HARMONIC: 1.5,
Alignment.SYMBIOTIC: 1.3,
Alignment.LAWFUL_GOOD: 1.2,
Alignment.CHAOTIC_EVIL: -0.5,
Alignment.ENTROPIC: -0.3,
}.get(
self.fractalstat.alignment if self.fractalstat else Alignment.TRUE_NEUTRAL,
1.0,
)
return min(1.0, base_potential * alignment_bonus)
# ============================================================================
# Helper Functions
# ============================================================================
def hash_for_coordinates(data: Dict[str, Any]) -> str:
"""Deterministic hashing for coordinate assignment"""
json_str = json.dumps(data, sort_keys=True)
return hashlib.sha256(json_str.encode()).hexdigest()
def compute_adjacency_score(tags1: List[str], tags2: List[str]) -> float:
"""
Compute adjacency (similarity) score between two tag sets.
Returns 0-100 score.
"""
if not tags1 or not tags2:
return 0.0
common = len(set(tags1) & set(tags2))
total = len(set(tags1) | set(tags2))
return (common / total) * 100 if total > 0 else 0.0
# ============================================================================
# BitChain Entity (moved from fractalstat_experiments to break circular import)
# ============================================================================
class DataClass(Enum):
"""Data sensitivity classification."""
PUBLIC = "PUBLIC" # Anyone can read
SENSITIVE = "SENSITIVE" # Authenticated users, role-based
PII = "PII" # Owner-only, requires 2FA
class Capability(Enum):
"""Recovery capability levels."""
COMPRESSED = "compressed" # Read-only mist form, no expansion
PARTIAL = "partial" # Anonymized expansion, limited fields
FULL = "full" # Complete recovery
# Coordinate data class for BitChain (different from FractalStatCoordinates)
@dataclass
class Coordinates:
"""FractalStat 8-dimensional coordinates with enhanced expressivity."""
realm: str # Domain: data, narrative, system, faculty, event, pattern, void, temporal
lineage: int # Generation from LUCA
adjacency: List[str] # Relational neighbors (append-only)
horizon: str # Lifecycle stage
luminosity: float # 0-100 activity level
polarity: Polarity # Resonance/affinity type
dimensionality: int # 0+ fractal depth
alignment: Alignment # Social alignment dynamics - NEW DIMENSION
def to_dict(self) -> Dict[str, Any]:
"""Convert to canonical dict with normalized floats."""
return {
# Append-only, but stored sorted
"realm": self.realm,
"lineage": self.lineage,
"adjacency": sorted(self.adjacency),
"horizon": self.horizon,
"luminosity": normalize_float(self.luminosity),
"polarity": self.polarity.name,
"dimensionality": self.dimensionality,
"alignment": self.alignment.name,
}
@dataclass
class BitChain:
"""
Minimal addressable unit in FractalStat space.
Represents a single entity instance (manifestation).
Security fields (Phase 1 Doctrine: Authentication + Access Control):
- data_classification: Sensitivity level (PUBLIC, SENSITIVE, PII)
- access_control_list: Roles allowed to recover this bitchain
- owner_id: User who owns this bitchain
- encryption_key_id: Optional key for encrypted-at-rest data
"""
id: str # Unique entity ID
entity_type: str # Type: concept, artifact, agent, etc.
realm: str # Domain classification
coordinates: Coordinates # FractalStat 8D position
created_at: str # ISO8601 UTC timestamp
state: Dict[str, Any] # Mutable state data
# Security fields (Phase 1)
data_classification: DataClass = DataClass.PUBLIC
access_control_list: List[str] = field(default_factory=lambda: ["owner"])
owner_id: Optional[str] = None
encryption_key_id: Optional[str] = None
def __post_init__(self):
"""Normalize timestamps."""
self.created_at = normalize_timestamp(self.created_at)
def to_canonical_dict(self) -> Dict[str, Any]:
"""Convert to canonical form for hashing."""
return {
"created_at": self.created_at,
"entity_type": self.entity_type,
"id": self.id,
"realm": self.realm,
"fractalstat_coordinates": self.coordinates.to_dict(),
"state": sort_json_keys(self.state),
}
def compute_address(self) -> str:
"""Compute this bit-chain's FractalStat address (hash)."""
return compute_address_hash(self.to_canonical_dict())
def get_fractalstat_uri(self) -> str:
"""Generate FractalStat URI address format."""
coords = self.coordinates
adjacency_hash = compute_address_hash({"adjacency": sorted(coords.adjacency)})[
:8
]
uri = (
f"fractalstat://{coords.realm}/{coords.lineage}/{adjacency_hash}/{coords.horizon}"
)
uri += f"?r={normalize_float(coords.luminosity)}&p={coords.polarity.name}"
uri += f"&d={coords.dimensionality}&s={self.id}&a={coords.alignment.name}"
return uri
# ============================================================================
# Constants and utilities for BitChain (moved from fractalstat_experiments)
# ============================================================================
# Use cryptographically secure random number generator
secure_random = secrets.SystemRandom()
REALMS = ["data", "narrative", "system", "faculty", "event", "pattern", "void"]
HORIZONS = ["genesis", "emergence", "peak", "decay", "crystallization"]
POLARITY_LIST = ["logic", "creativity", "order", "chaos", "balance", "achievement",
"contribution", "community", "technical", "creative", "unity", "void"]
ALIGNMENT_LIST = ["lawful_good", "neutral_good", "chaotic_good", "lawful_neutral",
"true_neutral", "chaotic_neutral", "lawful_evil", "neutral_evil"]
ENTITY_TYPES = [
"concept",
"artifact",
"agent",
"lineage",
"adjacency",
"horizon",
"fragment",
]
def normalize_float(value: float, decimal_places: int = 8) -> str:
"""
Normalize floating point to 8 decimal places using banker's rounding.
"""
if isinstance(value, float):
if value != value or value == float("inf") or value == float("-inf"):
raise ValueError(f"NaN and Inf not allowed: {value}")
# Use Decimal for precise rounding
d = Decimal(str(value))
quantized = d.quantize(Decimal(10) ** -decimal_places, rounding=ROUND_HALF_EVEN)
# Convert to string and strip trailing zeros
result = str(quantized)
if "." in result:
result = result.rstrip("0")
if result.endswith("."):
result += "0"
elif "E" in result or "e" in result:
# Handle scientific notation
result = "0.0"
return result
def normalize_timestamp(ts: Optional[str] = None) -> str:
"""
Normalize timestamp to ISO8601 UTC with millisecond precision.
"""
if ts is None:
now = datetime.now(timezone.utc)
return now.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + "Z"
else:
# Parse input timestamp and convert to UTC
if ts.endswith("Z"):
ts = ts[:-1] + "+00:00"
now = datetime.fromisoformat(ts).astimezone(timezone.utc)
# Format with millisecond precision
return now.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + "Z"
def sort_json_keys(obj: Any) -> Any:
"""
Recursively sort all JSON object keys in ASCII order (case-sensitive).
"""
if isinstance(obj, dict):
return {k: sort_json_keys(obj[k]) for k in sorted(obj.keys())}
elif isinstance(obj, list):
return [sort_json_keys(item) for item in obj]
else:
return obj
def canonical_serialize(data: Dict[str, Any]) -> str:
"""
Serialize to canonical form for deterministic hashing.
"""
sorted_data = sort_json_keys(data)
canonical = json.dumps(
sorted_data, separators=(",", ":"), ensure_ascii=True, sort_keys=False
)
return canonical
def compute_address_hash(data: Dict[str, Any]) -> str:
"""
Compute SHA-256 hash of canonical serialization.
"""
canonical = canonical_serialize(data)
return hashlib.sha256(canonical.encode("utf-8")).hexdigest()
def generate_random_bitchain(seed: Optional[int] = None) -> BitChain:
"""
Generate a random bit-chain for testing and validation experiments.
"""
# Use seedable random when seed is provided, otherwise use secure random
if seed is not None:
rng = random.Random(seed)
base_id = hashlib.sha256(str(seed).encode()).hexdigest()[:32]
id_str = f"{base_id[:8]}-{base_id[8:12]}-{base_id[12:16]}-{base_id[16:20]}"
id_str += f"-{base_id[20:32]}"
created_at_str = f"2024-01-01T{seed % 24:02d}:{(seed // 24) % 60:02d}"
created_at_str += f":{(seed // 1440) % 60:02d}.000Z"
else:
rng = secure_random
id_str = str(uuid.uuid4())
created_at_str = datetime.now(timezone.utc).isoformat()
# Replace all instances of `secure_random.` with `rng.` in the rest of the function
adjacency_ids = [
(
hashlib.sha256(f"{seed}-adj-{i}".encode()).hexdigest()[:32]
if seed is not None
else str(uuid.uuid4())
)
for i in range(rng.randint(0, 5)) # Changed from secure_random.randint
]
if seed is not None and adjacency_ids:
adjacency_ids = [
f"{uuid_hex[:8]}-{uuid_hex[8:12]}-{uuid_hex[12:16]}-{uuid_hex[16:20]}"
f"-{uuid_hex[20:32]}"
for uuid_hex in adjacency_ids
]
# Generate coordinates with alignment
luminosity_val = rng.uniform(0, 100) # Changed from secure_random.uniform
polarity_val = rng.choice(POLARITY_LIST) # Changed from secure_random.choice
dimensionality_val = rng.randint(0, 5) # Changed from secure_random.randint
alignment_val = rng.choice(list(Alignment)) # Changed from secure_random.choice
return BitChain(
id=id_str,
entity_type=rng.choice(ENTITY_TYPES), # Changed from secure_random.choice
realm=rng.choice(REALMS), # Changed from secure_random.choice
coordinates=Coordinates(
realm=rng.choice(REALMS), # Changed from secure_random.choice
lineage=rng.randint(1, 100), # Changed from secure_random.randint
adjacency=adjacency_ids,
horizon=rng.choice(HORIZONS), # Changed from secure_random.choice
luminosity=luminosity_val,
polarity=Polarity[polarity_val.upper()],
dimensionality=dimensionality_val,
alignment=alignment_val,
),
created_at=created_at_str,
state={"value": rng.randint(0, 1000)}, # Changed from secure_random.randint
)
|