Spaces:
Running
on
Zero
Running
on
Zero
File size: 53,354 Bytes
55d584b ec38897 55d584b 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 2133289 0ccf2f0 55d584b 2133289 55d584b 0ccf2f0 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 2133289 0ccf2f0 2133289 0ccf2f0 2133289 0ccf2f0 55d584b 0ccf2f0 55d584b 2133289 55d584b 0ccf2f0 2133289 0ccf2f0 55d584b 2133289 55d584b ec38897 0ccf2f0 ec38897 2133289 55d584b 2133289 0ccf2f0 55d584b 0ccf2f0 55d584b 2133289 55d584b 86b7b28 55d584b 2133289 55d584b 0ccf2f0 55d584b 2133289 55d584b 2133289 55d584b 0ccf2f0 55d584b 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 0ccf2f0 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 86b7b28 2133289 55d584b 2133289 55d584b 0ccf2f0 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 2133289 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 2133289 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 2133289 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
"""
Retrieval API - Anchor-Grounded Recall Context System
Provides anchor-grounded context retrieval and recall capabilities
for the Cognitive Geo-Thermal Lore Engine v0.3.
"""
from typing import List, Dict, Any, Optional, Tuple, Union
import time
import hashlib
from dataclasses import dataclass
from enum import Enum
class RetrievalMode(Enum):
"""Types of retrieval operations."""
SEMANTIC_SIMILARITY = "semantic_similarity" # Find semantically similar content
TEMPORAL_SEQUENCE = "temporal_sequence" # Retrieve by time sequence
ANCHOR_NEIGHBORHOOD = "anchor_neighborhood" # Content around specific anchors
PROVENANCE_CHAIN = "provenance_chain" # Follow provenance relationships
CONFLICT_AWARE = "conflict_aware" # Exclude conflicting content
COMPOSITE = "composite" # Multi-modal retrieval
@dataclass
class RetrievalQuery:
"""Structured query for context retrieval."""
query_id: str
mode: RetrievalMode
anchor_ids: Optional[List[str]] = None
semantic_query: Optional[str] = None
temporal_range: Optional[Tuple[float, float]] = None # (start_time, end_time)
max_results: int = 10
confidence_threshold: float = 0.6
exclude_conflicts: bool = True
include_provenance: bool = True
query_timestamp: float = None
fractalstat_hybrid: bool = True # Enable FractalStat hybrid scoring
fractalstat_address: Optional[Dict[str, Any]] = None # FractalStat coordinates for hybrid scoring
weight_semantic: float = 0.6 # Weight for semantic similarity in hybrid mode
weight_fractalstat: float = 0.4 # Weight for FractalStat resonance in hybrid mode
def __post_init__(self):
if self.query_timestamp is None:
self.query_timestamp = time.time()
if self.fractalstat_hybrid and not self.fractalstat_address:
# Default 8D FractalStat address if not specified
self.fractalstat_address = {
"realm": {"type": "default", "label": "retrieval_query"},
"lineage": 0,
"adjacency": 0.5,
"horizon": "scene",
"luminosity": 70.0, # Updated scale 0-100
"polarity": 0.0, # Updated scale -1 to 1
"dimensionality": 3,
"alignment": {"type": "true_neutral"}, # 8th dimension added
}
@dataclass
class RetrievalResult:
"""Result from a retrieval operation."""
result_id: str
content_type: str # "anchor", "micro_summary", "macro_distillation", "molten_glyph"
content_id: str
content: str
relevance_score: float
temporal_distance: float # How far from query time
anchor_connections: List[str] # Connected anchor IDs
provenance_depth: int
conflict_flags: List[str] # Any conflicts detected
metadata: Dict[str, Any]
fractalstat_resonance: float = 0.0 # FractalStat hybrid scoring component (if enabled)
semantic_similarity: float = 0.0 # Semantic scoring component (if hybrid)
@dataclass
class ContextAssembly:
"""Assembled context from multiple retrieval results."""
assembly_id: str
query: RetrievalQuery
results: List[RetrievalResult]
total_relevance: float
temporal_span_hours: float
anchor_coverage: List[str]
assembly_quality: float # Overall quality score
conflict_summary: Dict[str, int]
retrieval_timestamp: float
class RetrievalAPI:
"""
Anchor-grounded context retrieval system with optional FractalStat hybrid scoring.
Provides intelligent context assembly by combining semantic anchors,
micro-summaries, macro distillations, and memory fragments with
conflict awareness and provenance tracking.
Supports FractalStat hybrid scoring for multi-dimensional retrieval when enabled.
"""
def __init__(
self,
config: Optional[Dict[str, Any]] = None,
semantic_anchors=None,
summarization_ladder=None,
conflict_detector=None,
embedding_provider=None,
fractalstat_bridge=None,
):
"""Initialize the retrieval API."""
self.config = config or {}
# Component dependencies
self.semantic_anchors = semantic_anchors
self.summarization_ladder = summarization_ladder
self.conflict_detector = conflict_detector
self.embedding_provider = embedding_provider
self.fractalstat_bridge = fractalstat_bridge # Optional FractalStat RAG bridge for hybrid scoring
# Configuration parameters
self.default_max_results = self.config.get("default_max_results", 10)
self.relevance_threshold = self.config.get("relevance_threshold", 0.5)
self.temporal_decay_hours = self.config.get("temporal_decay_hours", 24)
self.quality_threshold = self.config.get("quality_threshold", 0.6)
# FractalStat hybrid scoring configuration
self.enable_fractalstat_hybrid = self.config.get("enable_fractalstat_hybrid", False)
self.default_weight_semantic = self.config.get("default_weight_semantic", 0.6)
self.default_weight_fractalstat = self.config.get("default_weight_fractalstat", 0.4)
# Retrieval cache (for performance)
self.query_cache: Dict[str, ContextAssembly] = {}
self.cache_ttl_seconds = self.config.get("cache_ttl_seconds", 300) # 5 minutes
# Document FractalStat assignments cache (for rapid re-retrieval)
self.document_fractalstat_cache: Dict[str, Dict[str, Any]] = {}
# Simple in-memory document store for ingestion
self._context_store: Dict[str, Dict[str, Any]] = {}
# Metrics
self.metrics = {
"total_queries": 0,
"cache_hits": 0,
"cache_misses": 0,
"hybrid_queries": 0,
"average_results_per_query": 0.0,
"average_retrieval_time_ms": 0.0,
"quality_distribution": {"high": 0, "medium": 0, "low": 0},
}
def retrieve_context(self, query: Union[RetrievalQuery, Dict[str, Any]]) -> ContextAssembly:
"""
Main retrieval method - assemble context based on query.
Args:
query: RetrievalQuery object or dict with query parameters
Returns:
ContextAssembly with retrieved and assembled context
"""
start_time = time.time()
# Convert dict to RetrievalQuery if needed
if isinstance(query, dict):
query = self._dict_to_query(query)
self.metrics["total_queries"] += 1
# Check cache first
cache_key = self._generate_cache_key(query)
cached_result = self._get_cached_result(cache_key)
if cached_result:
self.metrics["cache_hits"] += 1
return cached_result
self.metrics["cache_misses"] += 1
# Perform retrieval based on mode
results = []
if query.mode == RetrievalMode.SEMANTIC_SIMILARITY:
results = self._retrieve_semantic_similarity(query)
elif query.mode == RetrievalMode.TEMPORAL_SEQUENCE:
results = self._retrieve_temporal_sequence(query)
elif query.mode == RetrievalMode.ANCHOR_NEIGHBORHOOD:
results = self._retrieve_anchor_neighborhood(query)
elif query.mode == RetrievalMode.PROVENANCE_CHAIN:
results = self._retrieve_provenance_chain(query)
elif query.mode == RetrievalMode.CONFLICT_AWARE:
results = self._retrieve_conflict_aware(query)
elif query.mode == RetrievalMode.COMPOSITE:
results = self._retrieve_composite(query)
else:
# Default to semantic similarity
results = self._retrieve_semantic_similarity(query)
# Filter and rank results
filtered_results = self._filter_and_rank_results(results, query)
# Assemble final context
assembly = self._assemble_context(query, filtered_results)
# Cache result
self._cache_result(cache_key, assembly)
# Update metrics
elapsed_ms = (time.time() - start_time) * 1000
self._update_metrics(assembly, elapsed_ms)
return assembly
def query_semantic_anchors(
self, query_text: str, max_results: int = 5
) -> List[RetrievalResult]:
"""
Quick semantic anchor query for simple use cases.
Args:
query_text: Text to find similar anchors for
max_results: Maximum number of results
Returns:
List of RetrievalResult objects for matching anchors
"""
query = RetrievalQuery(
query_id=f"quick_{int(time.time())}",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query=query_text,
max_results=max_results,
)
assembly = self.retrieve_context(query)
return assembly.results
def get_anchor_context(self, anchor_id: str, context_radius: int = 3) -> ContextAssembly:
"""
Get context around a specific anchor.
Args:
anchor_id: ID of anchor to get context for
context_radius: How many related items to include
Returns:
ContextAssembly with anchor neighborhood context
"""
query = RetrievalQuery(
query_id=f"anchor_ctx_{anchor_id}_{int(time.time())}",
mode=RetrievalMode.ANCHOR_NEIGHBORHOOD,
anchor_ids=[anchor_id],
max_results=context_radius * 2,
)
return self.retrieve_context(query)
def trace_provenance(self, content_id: str, max_depth: int = 5) -> ContextAssembly:
"""
Trace provenance chain for a piece of content.
Args:
content_id: ID of content to trace
max_depth: Maximum provenance depth
Returns:
ContextAssembly with provenance chain
"""
query = RetrievalQuery(
query_id=f"prov_{content_id}_{int(time.time())}",
mode=RetrievalMode.PROVENANCE_CHAIN,
anchor_ids=[content_id],
max_results=max_depth,
)
return self.retrieve_context(query)
def add_document(
self,
doc_id: str,
content: str,
metadata: Dict[str, Any] = None,
embedding: Optional[List[float]] = None,
fractalstat_coordinates: Optional[Dict[str, Any]] = None,
) -> bool:
"""
Add a document to the context store for retrieval.
Args:
doc_id: Unique document identifier
content: Document content
metadata: Optional metadata (realm, type, etc.)
embedding: Optional pre-computed embedding vector
fractalstat_coordinates: Optional pre-computed FractalStat coordinates
Returns:
True if added successfully
"""
if doc_id in self._context_store:
return False # Document already exists
doc_entry = {
"content": content,
"metadata": metadata or {},
"added_at": time.time(),
"length": len(content),
"content_hash": hashlib.sha256(content.encode()).hexdigest(),
}
if embedding is None and self.embedding_provider:
embedding = self.embedding_provider.embed_text(content)
if embedding:
doc_entry["embedding"] = embedding
if (
fractalstat_coordinates is None
and embedding
and hasattr(self.embedding_provider, "compute_fractalstat_from_embedding")
):
fractalstat_coordinates = self.embedding_provider.compute_fractalstat_from_embedding(embedding)
if fractalstat_coordinates:
doc_entry["fractalstat_coordinates"] = fractalstat_coordinates
self._context_store[doc_id] = doc_entry
return True
def get_context_store_size(self) -> int:
"""Get number of documents in context store."""
return len(self._context_store)
def get_retrieval_metrics(self) -> Dict[str, Any]:
"""Get retrieval performance and usage metrics."""
return {
"retrieval_metrics": self.metrics.copy(),
"cache_performance": {
"hit_rate": self._calculate_cache_hit_rate(),
"cache_size": len(self.query_cache),
"cache_efficiency": self._calculate_cache_efficiency(),
},
"context_store_size": self.get_context_store_size(),
"system_health": {
"components_available": self._check_component_availability(),
"average_quality": self._calculate_average_quality(),
"retrieval_success_rate": self._calculate_success_rate(),
},
}
def _dict_to_query(self, query_dict: Dict[str, Any]) -> RetrievalQuery:
"""Convert dictionary to RetrievalQuery object."""
return RetrievalQuery(
query_id=query_dict.get("query_id", f"query_{int(time.time())}"),
mode=RetrievalMode(query_dict.get("mode", "semantic_similarity")),
anchor_ids=query_dict.get("anchor_ids"),
semantic_query=query_dict.get("semantic_query"),
temporal_range=query_dict.get("temporal_range"),
max_results=query_dict.get("max_results", self.default_max_results),
confidence_threshold=query_dict.get("confidence_threshold", 0.6),
exclude_conflicts=query_dict.get("exclude_conflicts", True),
include_provenance=query_dict.get("include_provenance", True),
fractalstat_hybrid=query_dict.get("fractalstat_hybrid", self.enable_fractalstat_hybrid),
fractalstat_address=query_dict.get("fractalstat_address"),
weight_semantic=query_dict.get("weight_semantic", self.default_weight_semantic),
weight_fractalstat=query_dict.get("weight_fractalstat", self.default_weight_fractalstat),
)
def _retrieve_semantic_similarity(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve content based on semantic similarity."""
results = []
if not query.semantic_query:
return results
# DEBUG
import sys
print(
f"DEBUG: _retrieve_semantic_similarity called with query='{query.semantic_query}'",
file=sys.stderr,
)
print(
f"DEBUG: embedding_provider={self.embedding_provider}, "
f"semantic_anchors={self.semantic_anchors}",
file=sys.stderr,
)
print(f"DEBUG: context_store size={len(self._context_store)}", file=sys.stderr)
# If embedding provider available, use it
if self.embedding_provider:
# Get query embedding
try:
query_embedding = self.embedding_provider.embed_text(query.semantic_query)
except OSError:
return results
# Search semantic anchors
if self.semantic_anchors:
for anchor_id, anchor in self.semantic_anchors.anchors.items():
if anchor.embedding:
query_embedding = self.embedding_provider.embed_text(query.semantic_query)
similarity = self.embedding_provider.calculate_similarity(
query_embedding, anchor.embedding
)
if similarity >= query.confidence_threshold:
result = RetrievalResult(
result_id=f"anchor_{anchor_id}",
content_type="anchor",
content_id=anchor_id,
content=anchor.concept_text,
relevance_score=similarity,
temporal_distance=self._calculate_temporal_distance(
anchor.provenance.first_seen, query.query_timestamp
),
anchor_connections=[anchor_id],
provenance_depth=1,
conflict_flags=[],
metadata={
"heat": anchor.heat,
"updates": anchor.provenance.update_count,
"semantic_drift": anchor.semantic_drift,
},
)
results.append(result)
# Search micro-summaries if available
if self.summarization_ladder:
for micro in self.summarization_ladder.micro_summaries:
if micro.semantic_centroid:
similarity = self.embedding_provider.calculate_similarity(
query_embedding, micro.semantic_centroid
)
if similarity >= query.confidence_threshold:
result = RetrievalResult(
result_id=f"micro_{micro.summary_id}",
content_type="micro_summary",
content_id=micro.summary_id,
content=micro.compressed_text,
relevance_score=similarity,
temporal_distance=self._calculate_temporal_distance(
micro.creation_timestamp, query.query_timestamp
),
anchor_connections=[],
provenance_depth=2,
conflict_flags=[],
metadata={
"window_size": micro.window_size,
"heat_aggregate": micro.heat_aggregate,
"fragments": micro.window_fragments,
},
)
results.append(result)
# Always search context store (uses embeddings if available, falls back to keyword)
context_results = self._search_context_store(query)
results.extend(context_results)
return results
def _search_context_store(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""
Search context store using embeddings (semantic) or keyword fallback.
Prefers embedding-based semantic search when available.
"""
results = []
if not query.semantic_query or not self._context_store:
return results
try:
if self.embedding_provider and hasattr(self.embedding_provider, "semantic_search"):
return self._search_context_store_semantic(query)
except OSError:
pass
return self._search_context_store_keyword(query)
def _search_context_store_semantic(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Search context store using semantic embeddings."""
results = []
if not query.semantic_query:
return results
embeddings_list = []
doc_ids = []
for doc_id, doc_data in self._context_store.items():
if "embedding" in doc_data:
embeddings_list.append(doc_data["embedding"])
doc_ids.append(doc_id)
if not embeddings_list:
return self._search_context_store_keyword(query)
try:
similarities = self.embedding_provider.semantic_search(
query.semantic_query, embeddings_list, top_k=query.max_results
)
for doc_idx, sim_score in similarities:
if sim_score >= query.confidence_threshold:
doc_id = doc_ids[doc_idx]
doc_data = self._context_store[doc_id]
fractalstat_resonance = 0.0
if "fractalstat_coordinates" in doc_data and query.fractalstat_hybrid:
fractalstat_resonance = self._calculate_fractalstat_resonance(
doc_data["fractalstat_coordinates"], query.fractalstat_address
)
hybrid_score = sim_score
if query.fractalstat_hybrid:
hybrid_score = (
query.weight_semantic * sim_score + query.weight_fractalstat * fractalstat_resonance
)
result = RetrievalResult(
result_id=f"ctx_{doc_id}",
content_type="context_store",
content_id=doc_id,
content=doc_data.get("content", "")[:500],
relevance_score=hybrid_score,
temporal_distance=0.0,
anchor_connections=[],
provenance_depth=1,
conflict_flags=[],
metadata=doc_data.get("metadata", {}),
semantic_similarity=sim_score,
fractalstat_resonance=fractalstat_resonance,
)
results.append(result)
except OSError:
return self._search_context_store_keyword(query)
return results
def _search_context_store_keyword(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Fallback keyword-based search of context store."""
results = []
if not query.semantic_query:
return results
query_terms = query.semantic_query.lower().split()
scored_docs = []
for doc_id, doc_data in self._context_store.items():
content = doc_data.get("content", "").lower()
matches = sum(1 for term in query_terms if term in content)
if matches > 0:
relevance_score = (matches / len(query_terms)) ** 0.5
scored_docs.append((doc_id, doc_data, relevance_score))
scored_docs.sort(key=lambda x: x[2], reverse=True)
for doc_id, doc_data, relevance_score in scored_docs[: query.max_results]:
if relevance_score >= query.confidence_threshold:
result = RetrievalResult(
result_id=f"ctx_{doc_id}",
content_type="context_store",
content_id=doc_id,
content=doc_data.get("content", "")[:500],
relevance_score=relevance_score,
temporal_distance=0.0,
anchor_connections=[],
provenance_depth=1,
conflict_flags=[],
metadata=doc_data.get("metadata", {}),
semantic_similarity=relevance_score,
)
results.append(result)
return results
def _calculate_fractalstat_resonance(
self, doc_fractalstat: Dict[str, Any], query_fractalstat: Optional[Dict[str, Any]]
) -> float:
"""Calculate 8D FractalStat resonance between document and query coordinates."""
if not query_fractalstat or not doc_fractalstat:
return 0.5
try:
# 7 dimensions from original FractalStat plus alignment (8th dimension)
lineage_dist = abs(doc_fractalstat.get("lineage", 0.5) - query_fractalstat.get("lineage", 0.5))
adjacency_dist = abs(
doc_fractalstat.get("adjacency", 0.5) - query_fractalstat.get("adjacency", 0.5)
)
luminosity_dist = abs(
doc_fractalstat.get("luminosity", 70.0) - query_fractalstat.get("luminosity", 70.0)
) / 100.0 # Normalize to 0-1 scale
polarity_dist = abs(
doc_fractalstat.get("polarity", 0.0) - query_fractalstat.get("polarity", 0.0)
) / 2.0 # Normalize from [-1,1] to [0,1]
dimensionality_dist = abs(
doc_fractalstat.get("dimensionality", 3) - query_fractalstat.get("dimensionality", 3)
) / 7.0 # Normalize from [1,8] to [0,1]
# 8th dimension: Alignment resonance with social dynamics
doc_alignment = doc_fractalstat.get("alignment", {}).get("type", "true_neutral")
query_alignment = query_fractalstat.get("alignment", {}).get("type", "true_neutral")
# Alignment synergy matrix for social coordination patterns - stricter resonance
alignment_synergy = {
("harmonic", "harmonic"): 1.0,
("harmonic", "symbiotic"): 0.9,
("symbiotic", "symbiotic"): 1.0,
("harmonic", "entropic"): 0.3, # Much lower for opposing dynamics
("entropic", "entropic"): 1.0,
("true_neutral", "true_neutral"): 0.7,
("balanced", "balanced"): 0.7,
("chaotic", "chaotic"): 1.0,
("harmonic", "chaotic"): 0.2, # Very low for harmonic-chaotic
("symbiotic", "chaotic"): 0.3,
("chaotic", "entropic"): 0.8,
}.get((doc_alignment, query_alignment), 0.4) # Lower default
alignment_resonance = alignment_synergy
# Calculate average distance across 7 core dimensions (original FractalStat)
core_avg_distance = (
lineage_dist
+ adjacency_dist
+ luminosity_dist
+ polarity_dist
+ dimensionality_dist
) / 5.0
# Combine core dimensions with alignment synergy - extremely strict for significant differences
# When core distances are significant (>0.25), heavily penalize coherence
if core_avg_distance > 0.7:
# Very different: almost no core contribution
core_weight = 0.001 # Minimal core contribution
alignment_weight = 0.999 # Dominated by alignment, even if same
elif core_avg_distance > 0.25:
# Different: heavy core penalty
core_weight = 0.01
alignment_weight = 0.99
else:
# Moderate differences: balanced weights
core_weight = 0.8
alignment_weight = 0.2
total_resonance = (core_weight * (1.0 - core_avg_distance) + alignment_weight * alignment_resonance)
resonance = max(0.0, min(1.0, total_resonance ** 3.0)) # Even stronger decay
return resonance
except OSError:
return 0.5
def _retrieve_temporal_sequence(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve content based on temporal sequence."""
results = []
if not query.temporal_range:
# Default to last 24 hours
end_time = query.query_timestamp
start_time = end_time - (24 * 3600)
temporal_range = (start_time, end_time)
else:
temporal_range = query.temporal_range
# Collect items in temporal range
temporal_items = []
# Add anchors
if self.semantic_anchors:
for anchor_id, anchor in self.semantic_anchors.anchors.items():
if temporal_range[0] <= anchor.provenance.first_seen <= temporal_range[1]:
temporal_items.append(
("anchor", anchor_id, anchor.provenance.first_seen, anchor)
)
# Add micro-summaries
if self.summarization_ladder:
for micro in self.summarization_ladder.micro_summaries:
if temporal_range[0] <= micro.creation_timestamp <= temporal_range[1]:
temporal_items.append(
("micro_summary", micro.summary_id, micro.creation_timestamp, micro)
)
# Sort by timestamp
temporal_items.sort(key=lambda x: x[2])
# Convert to results
for item_type, item_id, timestamp, item_data in temporal_items[: query.max_results]:
if item_type == "anchor":
anchor = item_data
result = RetrievalResult(
result_id=f"temporal_anchor_{item_id}",
content_type="anchor",
content_id=item_id,
content=anchor.concept_text,
relevance_score=self._calculate_temporal_relevance(
timestamp, query.query_timestamp
),
temporal_distance=abs(timestamp - query.query_timestamp),
anchor_connections=[item_id],
provenance_depth=1,
conflict_flags=[],
metadata={"timestamp": timestamp, "heat": anchor.heat},
)
results.append(result)
elif item_type == "micro_summary":
micro = item_data
result = RetrievalResult(
result_id=f"temporal_micro_{item_id}",
content_type="micro_summary",
content_id=item_id,
content=micro.compressed_text,
relevance_score=self._calculate_temporal_relevance(
timestamp, query.query_timestamp
),
temporal_distance=abs(timestamp - query.query_timestamp),
anchor_connections=[],
provenance_depth=2,
conflict_flags=[],
metadata={"timestamp": timestamp, "window_size": micro.window_size},
)
results.append(result)
return results
def _retrieve_anchor_neighborhood(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve content in the neighborhood of specific anchors."""
results = []
if not query.anchor_ids or not self.semantic_anchors:
return results
for anchor_id in query.anchor_ids:
if anchor_id not in self.semantic_anchors.anchors:
continue
target_anchor = self.semantic_anchors.anchors[anchor_id]
# Find semantically similar anchors
for other_id, other_anchor in self.semantic_anchors.anchors.items():
if other_id == anchor_id:
continue
if target_anchor.embedding and other_anchor.embedding:
similarity = self.embedding_provider.calculate_similarity(
target_anchor.embedding, other_anchor.embedding
)
if similarity >= query.confidence_threshold:
result = RetrievalResult(
result_id=f"neighbor_{other_id}",
content_type="anchor",
content_id=other_id,
content=other_anchor.concept_text,
relevance_score=similarity,
temporal_distance=abs(
target_anchor.provenance.first_seen
- other_anchor.provenance.first_seen
),
anchor_connections=[anchor_id, other_id],
provenance_depth=1,
conflict_flags=[],
metadata={"neighbor_of": anchor_id, "similarity": similarity},
)
results.append(result)
return results
def _retrieve_provenance_chain(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve content following provenance relationships."""
results = []
# This would trace through the provenance chain of anchors, micro-summaries, etc.
# For now, implement a simplified version
if query.anchor_ids and self.semantic_anchors:
for anchor_id in query.anchor_ids:
if anchor_id in self.semantic_anchors.anchors:
anchor = self.semantic_anchors.anchors[anchor_id]
# Include the anchor itself
result = RetrievalResult(
result_id=f"prov_root_{anchor_id}",
content_type="anchor",
content_id=anchor_id,
content=anchor.concept_text,
relevance_score=1.0,
temporal_distance=0,
anchor_connections=[anchor_id],
provenance_depth=0,
conflict_flags=[],
metadata={
"provenance_role": "root",
"updates": anchor.provenance.update_count,
},
)
results.append(result)
# Add related content from update history
for i, update in enumerate(anchor.provenance.update_history):
if i >= query.max_results - 1:
break
result = RetrievalResult(
result_id=f"prov_update_{anchor_id}_{i}",
content_type="provenance_update",
content_id=f"{anchor_id}_update_{i}",
content=(
f"Update: {update.get('context', {}).get('mist_id', 'unknown')}"
),
relevance_score=0.8 - (i * 0.1),
temporal_distance=abs(update["timestamp"] - query.query_timestamp),
anchor_connections=[anchor_id],
provenance_depth=i + 1,
conflict_flags=[],
metadata={"update_context": update.get("context", {})},
)
results.append(result)
return results
def _retrieve_conflict_aware(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve content while avoiding conflicts."""
# First get base results
base_results = self._retrieve_semantic_similarity(query)
if not query.exclude_conflicts or not self.conflict_detector:
return base_results
# Filter out conflicting content
filtered_results = []
for result in base_results:
conflicts = []
# Check for conflicts involving this content
if hasattr(self.conflict_detector, "get_conflict_analysis"):
conflict_analysis = self.conflict_detector.get_conflict_analysis(result.content_id)
if conflict_analysis.get("conflicts_found", 0) > 0:
conflicts = [
f"conflict_confidence_{conflict_analysis.get('max_confidence', 0):.2f}"
]
# Include result but flag conflicts
result.conflict_flags = conflicts
if not conflicts or not query.exclude_conflicts:
filtered_results.append(result)
return filtered_results
def _retrieve_composite(self, query: RetrievalQuery) -> List[RetrievalResult]:
"""Retrieve using multiple modes and combine results."""
all_results = []
# Semantic similarity results (highest weight)
semantic_results = self._retrieve_semantic_similarity(query)
for result in semantic_results:
result.relevance_score *= 1.0 # Full weight
all_results.extend(semantic_results)
# Temporal sequence results (medium weight)
temporal_results = self._retrieve_temporal_sequence(query)
for result in temporal_results:
result.relevance_score *= 0.7 # Reduced weight
all_results.extend(temporal_results)
# Anchor neighborhood results (lower weight)
if query.anchor_ids:
neighborhood_results = self._retrieve_anchor_neighborhood(query)
for result in neighborhood_results:
result.relevance_score *= 0.5 # Lower weight
all_results.extend(neighborhood_results)
# Remove duplicates (by content_id)
seen_content_ids = set()
unique_results = []
for result in all_results:
if result.content_id not in seen_content_ids:
unique_results.append(result)
seen_content_ids.add(result.content_id)
return unique_results
def _filter_and_rank_results(
self, results: List[RetrievalResult], query: RetrievalQuery
) -> List[RetrievalResult]:
"""Filter and rank results based on query parameters."""
# Apply FractalStat hybrid scoring if enabled
if query.fractalstat_hybrid:
results = self._apply_hybrid_scoring(results, query)
self.metrics["hybrid_queries"] += 1
# Filter by confidence threshold
filtered = [r for r in results if r.relevance_score >= query.confidence_threshold]
# Apply temporal decay
for result in filtered:
age_hours = result.temporal_distance / 3600
decay_factor = max(0.1, 1.0 - (age_hours / self.temporal_decay_hours))
result.relevance_score *= decay_factor
# Sort by relevance score
filtered.sort(key=lambda x: x.relevance_score, reverse=True)
# Limit results
return filtered[: query.max_results]
def _assemble_context(
self, query: RetrievalQuery, results: List[RetrievalResult]
) -> ContextAssembly:
"""Assemble final context from filtered results."""
if not results:
# Empty assembly
return ContextAssembly(
assembly_id=f"empty_{query.query_id}",
query=query,
results=[],
total_relevance=0.0,
temporal_span_hours=0.0,
anchor_coverage=[],
assembly_quality=0.0,
conflict_summary={},
retrieval_timestamp=time.time(),
)
# Calculate metrics
total_relevance = sum(r.relevance_score for r in results)
# Temporal span
timestamps = [r.temporal_distance for r in results]
temporal_span_hours = (
(max(timestamps) - min(timestamps)) / 3600 if len(timestamps) > 1 else 0
)
# Anchor coverage
anchor_coverage = []
for result in results:
anchor_coverage.extend(result.anchor_connections)
anchor_coverage = list(set(anchor_coverage))
# Assembly quality score
assembly_quality = self._calculate_assembly_quality(results, query)
# Conflict summary
conflict_summary = {}
for result in results:
for flag in result.conflict_flags:
conflict_summary[flag] = conflict_summary.get(flag, 0) + 1
return ContextAssembly(
assembly_id=f"assembly_{query.query_id}_{int(time.time())}",
query=query,
results=results,
total_relevance=total_relevance,
temporal_span_hours=temporal_span_hours,
anchor_coverage=anchor_coverage,
assembly_quality=assembly_quality,
conflict_summary=conflict_summary,
retrieval_timestamp=time.time(),
)
def _calculate_temporal_distance(self, timestamp: float, reference_time: float) -> float:
"""Calculate temporal distance between two timestamps."""
return abs(timestamp - reference_time)
def _calculate_temporal_relevance(self, timestamp: float, reference_time: float) -> float:
"""Calculate relevance based on temporal proximity."""
distance_seconds = abs(timestamp - reference_time)
distance_hours = distance_seconds / 3600
# Exponential decay over 24 hours
return max(0.1, 1.0 - (distance_hours / 24.0))
def _calculate_assembly_quality(
self, results: List[RetrievalResult], query: RetrievalQuery
) -> float:
"""Calculate overall quality score for assembled context."""
if not results:
return 0.0
# Average relevance score
avg_relevance = sum(r.relevance_score for r in results) / len(results)
# Coverage score (how well we covered the query)
coverage_score = min(len(results) / query.max_results, 1.0)
# Conflict penalty
total_conflicts = sum(len(r.conflict_flags) for r in results)
conflict_penalty = max(0, 1.0 - (total_conflicts * 0.1))
# Diversity score (different content types)
content_types = set(r.content_type for r in results)
diversity_score = min(len(content_types) / 3.0, 1.0) # Max 3 types
# Weighted average
quality = (
avg_relevance * 0.4
+ coverage_score * 0.2
+ conflict_penalty * 0.2
+ diversity_score * 0.2
)
return quality
def _generate_cache_key(self, query: RetrievalQuery) -> str:
"""Generate cache key for query."""
key_parts = [
query.query_id,
query.mode.value,
str(query.anchor_ids) if query.anchor_ids else "none",
query.semantic_query or "none",
str(query.temporal_range) if query.temporal_range else "none",
str(query.max_results),
str(query.confidence_threshold),
]
key_string = "|".join(key_parts)
return hashlib.md5(key_string.encode()).hexdigest()
def _get_cached_result(self, cache_key: str) -> Optional[ContextAssembly]:
"""Get cached result if still valid."""
if cache_key in self.query_cache:
assembly = self.query_cache[cache_key]
age_seconds = time.time() - assembly.retrieval_timestamp
if age_seconds < self.cache_ttl_seconds:
return assembly
else:
# Remove stale cache entry
del self.query_cache[cache_key]
return None
def _cache_result(self, cache_key: str, assembly: ContextAssembly):
"""Cache retrieval result."""
self.query_cache[cache_key] = assembly
# Cleanup old cache entries
current_time = time.time()
stale_keys = [
key
for key, cached_assembly in self.query_cache.items()
if current_time - cached_assembly.retrieval_timestamp > self.cache_ttl_seconds
]
for key in stale_keys:
del self.query_cache[key]
def _update_metrics(self, assembly: ContextAssembly, elapsed_ms: float):
"""Update performance metrics."""
self.metrics["average_results_per_query"] = (
self.metrics["average_results_per_query"] * (self.metrics["total_queries"] - 1)
+ len(assembly.results)
) / self.metrics["total_queries"]
self.metrics["average_retrieval_time_ms"] = (
self.metrics["average_retrieval_time_ms"] * (self.metrics["total_queries"] - 1)
+ elapsed_ms
) / self.metrics["total_queries"]
# Quality distribution
if assembly.assembly_quality >= 0.8:
self.metrics["quality_distribution"]["high"] += 1
elif assembly.assembly_quality >= 0.6:
self.metrics["quality_distribution"]["medium"] += 1
else:
self.metrics["quality_distribution"]["low"] += 1
def _calculate_cache_hit_rate(self) -> float:
"""Calculate cache hit rate."""
total_requests = self.metrics["cache_hits"] + self.metrics["cache_misses"]
if total_requests == 0:
return 0.0
return self.metrics["cache_hits"] / total_requests
def _calculate_cache_efficiency(self) -> float:
"""Calculate cache efficiency score."""
hit_rate = self._calculate_cache_hit_rate()
cache_size_penalty = min(len(self.query_cache) / 100.0, 0.2) # Penalty for large cache
return max(0, hit_rate - cache_size_penalty)
def _check_component_availability(self) -> Dict[str, bool]:
"""Check availability of dependent components."""
return {
"semantic_anchors": self.semantic_anchors is not None,
"summarization_ladder": self.summarization_ladder is not None,
"conflict_detector": self.conflict_detector is not None,
"embedding_provider": self.embedding_provider is not None,
"fractalstat_bridge": self.fractalstat_bridge is not None,
}
def _calculate_average_quality(self) -> float:
"""Calculate average assembly quality."""
total_quality = sum(self.metrics["quality_distribution"].values())
if total_quality == 0:
return 0.0
weighted_quality = (
self.metrics["quality_distribution"]["high"] * 1.0
+ self.metrics["quality_distribution"]["medium"] * 0.7
+ self.metrics["quality_distribution"]["low"] * 0.3
)
return weighted_quality / total_quality
def _calculate_success_rate(self) -> float:
"""Calculate retrieval success rate."""
successful_retrievals = (
self.metrics["quality_distribution"]["high"]
+ self.metrics["quality_distribution"]["medium"]
)
total_retrievals = sum(self.metrics["quality_distribution"].values())
if total_retrievals == 0:
return 1.0
return successful_retrievals / total_retrievals
# ========================================================================
# FractalStat Hybrid Scoring Support (Phase 2)
# ========================================================================
def _auto_assign_fractalstat_address(
self, content_id: str, metadata: Dict[str, Any]
) -> Dict[str, Any]:
"""
Auto-assign FractalStat address to content based on metadata.
Supports fallback to default if metadata incomplete.
Args:
content_id: ID of the content being assigned
metadata: Document metadata with optional realm, lineage, etc.
Returns:
FractalStat address dictionary with all 8 dimensions
"""
# Check cache first
if content_id in self.document_fractalstat_cache:
return self.document_fractalstat_cache[content_id]
# Extract from metadata or use defaults
realm_type = metadata.get("realm_type", "data")
realm_label = metadata.get("realm_label", "content")
lineage = metadata.get("lineage", 0)
# Compute adjacency from connectivity hints
adjacency = min(1.0, metadata.get("connection_count", 0) / 10.0)
# Horizon from lifecycle stage
lifecycle = metadata.get("lifecycle_stage", "scene")
horizon_map = {
"genesis": "logline",
"emergence": "outline",
"peak": "scene",
"decay": "panel",
}
horizon = horizon_map.get(lifecycle, "scene")
# Luminosity from activity/heat
luminosity = min(1.0, max(0.0, metadata.get("activity_level", 0.5)))
# Polarity from update frequency / resonance
polarity = min(1.0, metadata.get("resonance_factor", 0.5))
# Dimensionality from thread count
thread_count = metadata.get("thread_count", 3)
dimensionality = min(8, max(1, thread_count)) # Updated to allow up to 8
# Alignment from social/coordination hints
alignment_type = metadata.get("alignment_type", "true_neutral")
fractalstat_address = {
"realm": {"type": realm_type, "label": realm_label},
"lineage": lineage,
"adjacency": round(adjacency, 2),
"horizon": horizon,
"luminosity": round(luminosity, 2),
"polarity": round(polarity, 2),
"dimensionality": dimensionality,
"alignment": {"type": alignment_type},
}
# Cache the assignment
self.document_fractalstat_cache[content_id] = fractalstat_address
return fractalstat_address
def _apply_hybrid_scoring(
self, results: List[RetrievalResult], query: RetrievalQuery
) -> List[RetrievalResult]:
"""
Apply FractalStat hybrid scoring to retrieval results.
Combines semantic similarity with FractalStat resonance scoring.
Updates relevance_score to reflect hybrid score.
Args:
results: Initial retrieval results with semantic scores
query: Query object with FractalStat address and weights
Returns:
Results with updated hybrid relevance scores
"""
if not query.fractalstat_hybrid or not self.fractalstat_bridge:
return results # No hybrid scoring if not enabled or bridge missing
try:
from warbler_cda.fractalstat_rag_bridge import FractalStatAddress as FractalStatAddress, Realm
except ImportError:
# Fallback if bridge not available
return results
# Convert query FractalStat dict to FractalStatAddress object
if not query.fractalstat_address:
return results
try:
q_fractalstat_dict = query.fractalstat_address
query_realm = Realm(
type=q_fractalstat_dict["realm"]["type"], label=q_fractalstat_dict["realm"]["label"]
)
# Get alignment from query address or default to true_neutral
query_alignment_type = q_fractalstat_dict.get("alignment", {}).get("type", "true_neutral")
from warbler_cda.fractalstat_rag_bridge import Alignment as BridgeAlignment
query_alignment = BridgeAlignment(type=query_alignment_type)
query_fractalstat = FractalStatAddress(
realm=query_realm,
lineage=q_fractalstat_dict["lineage"],
adjacency=q_fractalstat_dict["adjacency"],
horizon=q_fractalstat_dict["horizon"],
luminosity=q_fractalstat_dict["luminosity"],
polarity=q_fractalstat_dict["polarity"],
dimensionality=q_fractalstat_dict["dimensionality"],
alignment=query_alignment,
)
except OSError:
# Invalid FractalStat address, fall back to semantic
return results
# Apply hybrid scoring to each result
for result in results:
# Get or compute FractalStat address for this result's content
if "fractalstat" not in result.metadata:
# Auto-assign if not already present
result.metadata["fractalstat"] = self._auto_assign_fractalstat_address(
result.content_id, result.metadata
)
# Extract document FractalStat address
doc_fractalstat_dict = result.metadata.get("fractalstat", {})
if not doc_fractalstat_dict:
continue
try:
doc_realm = Realm(
type=doc_fractalstat_dict["realm"]["type"], label=doc_fractalstat_dict["realm"]["label"]
)
# Get alignment from document address or default to true_neutral
doc_alignment_type = doc_fractalstat_dict.get("alignment", {}).get("type", "true_neutral")
doc_alignment = BridgeAlignment(type=doc_alignment_type)
doc_fractalstat = FractalStatAddress(
realm=doc_realm,
lineage=doc_fractalstat_dict["lineage"],
adjacency=doc_fractalstat_dict["adjacency"],
horizon=doc_fractalstat_dict["horizon"],
luminosity=doc_fractalstat_dict["luminosity"],
polarity=doc_fractalstat_dict["polarity"],
dimensionality=doc_fractalstat_dict["dimensionality"],
alignment=doc_alignment,
)
except OSError:
# Skip if document FractalStat invalid
continue
# Compute FractalStat resonance score
fractalstat_res = self.fractalstat_bridge.fractalstat_resonance(query_fractalstat, doc_fractalstat)
result.fractalstat_resonance = fractalstat_res
# Compute semantic similarity (if available)
semantic_sim = result.relevance_score # Current score is semantic
result.semantic_similarity = semantic_sim
# Combine into hybrid score
hybrid = (query.weight_semantic * semantic_sim) + (query.weight_fractalstat * fractalstat_res)
result.relevance_score = max(0.0, min(hybrid, 1.0))
return results
def _get_fractalstat_address_for_content(
self, content_id: str, metadata: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""
Get or compute FractalStat address for content with caching.
Args:
content_id: ID of content
metadata: Content metadata
Returns:
FractalStat address dictionary or None
"""
if content_id in self.document_fractalstat_cache:
return self.document_fractalstat_cache[content_id]
return self._auto_assign_fractalstat_address(content_id, metadata)
|