File size: 2,594 Bytes
5d2d720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Warbler CDA Docker Build Performance

## Build Configuration

- **Dockerfile**: Minimal FractalStat testing setup
- **Base Image**: python:3.11-slim
- **Build Context Optimization**: .dockerignore excludes cache files and large directories
- **Dependency Strategy**: Minimal ML dependencies for FractalStat testing

## Performance Measurements

### Optimized Build Results (Windows with WSL)

```none
βœ… FINAL OPTIMIZED BUILD: 38.4 seconds (~40 seconds)
β”œβ”€β”€ Base Image Pull: 3.7 seconds
β”œβ”€β”€ System Dependencies: 20.5 seconds (git install)
β”œβ”€β”€ Dependencies (pip install): 5.8 seconds
β”‚   - pydantic>=2.0.0 (only needed library!)
β”‚   - pytest>=7.0.0 (testing framework)
β”œβ”€β”€ Code Copy: 0.2 seconds
β”œβ”€β”€ Layer Export: 6.4 seconds
└── Image Unpack: 1.7 seconds
```

### Performance Improvement Achieved

**πŸš€ Optimization Results:**

- **Build Time Reduction**: 94% faster (601.6s β†’ 38.4s)
- **Pip Install Reduction**: 98% faster (295.6s β†’ 5.8s)
- **Context Size**: 556B (highly optimized .dockerignore - final reduction)
- **Expected Image Size**: ~250MB (vs 12.29GB bloated)

**πŸ“Š Bottleneck Eliminated:**

- Removed PyTorch/Transformers dependency chain causing 98% of bloat
- FractalStat modules require **zero** ML libraries
- Pure Python with dataclasses, enums, typing, json

**πŸ” Root Cause Identified:**
Original bloat caused by `transformers[torch]` pulling:

- PyTorch CPU (~1GB)
- 100+ optional dependencies (~11GB)
- All unnecessary for FractalStat core functionality

## Recommendations for Faster Builds

### For Development Builds

1. **Use cached layers** - Base image and system dependencies rarely change
2. **Separate dependency layers** - Cache pip installs when code changes frequently
3. **Minimal dependencies** - Only install what's needed for testing FractalStat specifically

### For Production Builds

1. **Multi-stage builds** - Separate testing and runtime images
2. **Dependency optimization** - Use Docker layer caching more effectively
3. **Alternative base images** - Consider smaller Python images or compiled binaries

## Testing Results

- βœ… All 70 FractalStat entity tests pass
- βœ… FractalStat coordinates and entities work correctly
- βœ… RAG bridge integration functions properly
- βœ… Container startup and imports work as expected

## Performance Notes

- First-time build: ~10 minutes (acceptable for ML dependencies)
- Subsequent builds: Should be faster with Docker layer caching
- Network dependency: Download times vary by internet connection
- WSL overhead: Minimal impact on overall build time