Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,365 Bytes
5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 2c1a23f 5d2d720 f22e6ff 5d2d720 f22e6ff 5d2d720 f22e6ff 5d2d720 f22e6ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
---
title: Warbler CDA FractalStat RAG
emoji: π¦
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
short_description: RAG system with 8D FractalStat and 100k documents
tags:
- rag
- semantic-search
- retrieval
- fastapi
- fractalstat
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/68c705b6fc90bcc7a4f56721/8G2TJJT8enAFaBLJGTXka.png
---
# Warbler CDA - Cognitive Development Architecture RAG System
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
[](https://fastapi.tiangolo.com/)
[](https://docker.com)
A **production-ready RAG (Retrieval-Augmented Generation) system** with **FractalStat multi-dimensional addressing** for intelligent document retrieval, semantic memory, and automatic data ingestion.
## π Features
### Core RAG System
- **Semantic Anchors**: Persistent memory with provenance tracking
- **Hierarchical Summarization**: Micro/macro distillation for efficient compression
- **Conflict Detection**: Automatic detection and resolution of contradictory information
- **Memory Pooling**: Performance-optimized object pooling for high-throughput scenarios
### FractalStat Multi-Dimensional Addressing
- **8-Dimensional Coordinates**: Realm, Lineage, Adjacency, Horizon, Luminosity, Polarity, Dimensionality, Alignment
- **Hybrid Scoring**: Combines semantic similarity with FractalStat resonance for superior retrieval
- **Entanglement Detection**: Identifies relationships across dimensional space
- **Validated System**: Comprehensive experiments (EXP-01 through EXP-10) validate uniqueness, efficiency, and narrative preservation
### Production-Ready API
- **FastAPI Service**: High-performance async API with concurrent query support
- **CLI Tools**: Command-line interface for queries, ingestion, and management
- **HuggingFace Integration**: Direct ingestion from HF datasets
- **Docker Support**: Containerized deployment ready
## π Data Sources
The Warbler system is trained on carefully curated, MIT-licensed datasets from HuggingFace:
### Original Warbler Packs
- `warbler-pack-core` - Core narrative and reasoning patterns
- `warbler-pack-wisdom-scrolls` - Philosophical and wisdom-based content
- `warbler-pack-faction-politics` - Political and faction dynamics
### HuggingFace Datasets
- **arXiv Papers** (`nick007x/arxiv-papers`) - 2.5M+ scholarly papers covering scientific domains
- Due to space limits, we only ingest 100k of these documents for use on HuggingFace Spaces.
- **Prompt Engineering Report** (`PromptSystematicReview/ThePromptReport`) - 83 comprehensive prompt documentation entries
- Currently unavailable due to same reasons above.
- **Generated Novels** (`GOAT-AI/generated-novels`) - 20 narrative-rich novels for storytelling patterns
- Currently unavailable due to same reasons above.
- **Technical Manuals** (`nlasso/anac-manuals-23`) - 52 procedural and operational documents
- Currently unavailable due to same reasons above.
- **ChatEnv Enterprise** (`SustcZhangYX/ChatEnv`) - 112K+ software development conversations
- Currently unavailable due to same reasons above.
- **Portuguese Education** (`Solshine/Portuguese_Language_Education_Texts`) - 21 multilingual educational texts
- Currently unavailable due to same reasons above.
- **Educational Stories** (`MU-NLPC/Edustories-en`) - 1.5K+ case studies and learning narratives
All datasets are provided under MIT or compatible licenses. For complete attribution, see the HuggingFace Hub pages listed above.
## π¦ Installation
### From Source (Current Method)
```bash
git clone https://github.com/tiny-walnut-games/the-seed.git
cd the-seed/warbler-cda-package
pip install -e .
```
### Optional Dependencies
```bash
# OpenAI embeddings integration
pip install openai
# Development tools
pip install pytest pytest-cov
```
## π Quick Start
### Option 1: Direct Python (Easiest)
```bash
cd warbler-cda-package
# Start the API with automatic pack loading
./run_api.ps1
# Or on Linux/Mac:
python start_server.py
```
The API automatically loads all Warbler packs on startup and serves them at **http://localhost:8000**
### Option 2: Docker Compose
```bash
cd warbler-cda-package
docker-compose up --build
```
### Option 3: Kubernetes
```bash
cd warbler-cda-package/k8s
./demo-docker-k8s.sh # Full auto-deploy
```
## π‘ API Usage Examples
### Using the REST API
```bash
# Start the API first: ./run_api.ps1
# Then test with:
# Health check
curl http://localhost:8000/health
# Semantic search (plain English queries)
curl -X POST http://localhost:8000/query \
-H "Content-Type: application/json" \
-d '{
"query_id": "semantic1",
"semantic_query": "dancing under the moon",
"max_results": 5
}'
# FractalStat hybrid search (technical/science with dimensional awareness)
curl -X POST http://localhost:8000/query \
-H "Content-Type: application/json" \
-d '{
"query_id": "hybrid1",
"semantic_query": "interplanetary approach maneuvers",
"fractalstat_hybrid": true,
"max_results": 5
}'
# Get metrics
curl http://localhost:8000/metrics
```
### Understanding Search Modes
The system provides two search approaches with intelligent fallback:
#### Semantic Search (Default)
- **Use for**: Plain English queries, casual search, general questions
- **Behavior**: Pure semantic similarity matching
- **Examples**: "How does gravity work?", "tell me about dancing", "operating a spaceship"
- **Results**: Always returns matches when available, best for natural language
#### FractalStat Hybrid Search
- **Use for**: Technical/scientific queries, specific terminology, multi-dimensional search
- **Behavior**: Combines semantic similarity with 8D FractalStat resonance
- **Examples**: "rotation dynamics of Saturn's moons", "quantum chromodynamics", "interplanetary approach maneuvers"
- **Results**: Superior for technical content, may filter out general results
- **Fallback**: Automatically switches to semantic search if hybrid returns no results
**Pro Tip**: When hybrid search fails (threshold below 0.3), the system automatically falls back to semantic search, ensuring you always get relevant results.
### Using Python Programmatically
```python
import requests
# Health check
response = requests.get("http://localhost:8000/health")
print(f"API Status: {response.json()['status']}")
# Query
query_data = {
"query_id": "python_test",
"semantic_query": "rotation dynamics of Saturn's moons",
"max_results": 5,
"fractalstat_hybrid": True
}
results = requests.post("http://localhost:8000/query", json=query_data).json()
print(f"Found {len(results['results'])} results")
# Show top result
if results['results']:
top_result = results['results'][0]
print(f"Top score: {top_result['relevance_score']:.3f}")
print(f"Content: {top_result['content'][:100]}...")
```
### FractalStat Hybrid Scoring
```python
from warbler_cda import FractalStatRAGBridge
# Enable FractalStat hybrid scoring
fractalstat_bridge = FractalStatRAGBridge()
api = RetrievalAPI(
semantic_anchors=semantic_anchors,
embedding_provider=embedding_provider,
fractalstat_bridge=fractalstat_bridge,
config={"enable_fractalstat_hybrid": True}
)
# Query with hybrid scoring
from warbler_cda import RetrievalQuery, RetrievalMode
query = RetrievalQuery(
query_id="hybrid_query_1",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="Find wisdom about resilience",
fractalstat_hybrid=True,
weight_semantic=0.6,
weight_fractalstat=0.4
)
assembly = api.retrieve_context(query)
print(f"Found {len(assembly.results)} results with quality {assembly.assembly_quality:.3f}")
```
### Running the API Service
```bash
# Start the FastAPI service
uvicorn warbler_cda.api.service:app --host 0.0.0.0 --port 8000
# Or use the CLI
warbler-api --port 8000
```
### Using the CLI
```bash
# Query the API
warbler-cli query --query-id q1 --semantic "wisdom about courage" --max-results 10
# Enable hybrid scoring
warbler-cli query --query-id q2 --semantic "narrative patterns" --hybrid
# Bulk concurrent queries
warbler-cli bulk --num-queries 10 --concurrency 5 --hybrid
# Check metrics
warbler-cli metrics
```
## π FractalStat Experiments
The system includes validated experiments demonstrating:
- **EXP-01**: Address uniqueness (0% collision rate across 10K+ entities)
- **EXP-02**: Retrieval efficiency (sub-millisecond at 100K scale)
- **EXP-03**: Dimension necessity (all 7 dimensions required)
- **EXP-10**: Narrative preservation under concurrent load
```python
from warbler_cda import run_all_experiments
# Run validation experiments
results = run_all_experiments(
exp01_samples=1000,
exp01_iterations=10,
exp02_queries=1000,
exp03_samples=1000
)
print(f"EXP-01 Success: {results['EXP-01']['success']}")
print(f"EXP-02 Success: {results['EXP-02']['success']}")
print(f"EXP-03 Success: {results['EXP-03']['success']}")
```
## π― Use Cases
### 1. Intelligent Document Retrieval
```python
# Add documents from various sources
for doc in documents:
api.add_document(
doc_id=doc["id"],
content=doc["text"],
metadata={
"realm_type": "knowledge",
"realm_label": "technical_docs",
"lifecycle_stage": "emergence"
}
)
# Retrieve with context awareness
results = api.query_semantic_anchors("How to optimize performance?")
```
### 2. Narrative Coherence Analysis
```python
from warbler_cda import ConflictDetector
conflict_detector = ConflictDetector(embedding_provider=embedding_provider)
# Process statements
statements = [
{"id": "s1", "text": "The system is fast"},
{"id": "s2", "text": "The system is slow"}
]
report = conflict_detector.process_statements(statements)
print(f"Conflicts detected: {report['conflict_summary']}")
```
### 3. HuggingFace Dataset Ingestion
```python
from warbler_cda.utils import HFWarblerIngestor
ingestor = HFWarblerIngestor()
# Transform HF dataset to Warbler format
docs = ingestor.transform_npc_dialogue("amaydle/npc-dialogue")
# Create pack
pack_path = ingestor.create_warbler_pack(docs, "warbler-pack-npc-dialogue")
```
## ποΈ Architecture
```none
warbler_cda/
βββ retrieval_api.py # Main RAG API
βββ semantic_anchors.py # Semantic memory system
βββ anchor_data_classes.py # Core data structures
βββ anchor_memory_pool.py # Performance optimization
βββ summarization_ladder.py # Hierarchical compression
βββ conflict_detector.py # Conflict detection
βββ castle_graph.py # Concept extraction
βββ melt_layer.py # Memory consolidation
βββ evaporation.py # Content distillation
βββ fractalstat_rag_bridge.py # FractalStat hybrid scoring
βββ fractalstat_entity.py # FractalStat entity system
βββ fractalstat_experiments.py # Validation experiments
βββ embeddings/ # Embedding providers
β βββ base_provider.py
β βββ local_provider.py
β βββ openai_provider.py
β βββ factory.py
βββ api/ # Production API
β βββ service.py # FastAPI service
β βββ cli.py # CLI interface
βββ utils/ # Utilities
βββ load_warbler_packs.py
βββ hf_warbler_ingest.py
```
## π¬ Technical Details
### FractalStat Dimensions
1. **Realm**: Domain classification (type + label)
2. **Lineage**: Generation/version number
3. **Adjacency**: Graph connectivity (0.0-1.0)
4. **Horizon**: Lifecycle stage (logline, outline, scene, panel)
5. **Luminosity**: Clarity/activity level (0.0-1.0)
6. **Polarity**: Resonance/tension (0.0-1.0)
7. **Dimensionality**: Complexity/thread count (1-7)
### Hybrid Scoring Formula
```math
hybrid_score = (weight_semantic Γ semantic_similarity) + (weight_fractalstat Γ fractalstat_resonance)
```
Where:
- `semantic_similarity`: Cosine similarity of embeddings
- `fractalstat_resonance`: Multi-dimensional alignment score
- Default weights: 60% semantic, 40% FractalStat
## π Documentation
- [API Reference](docs/api.md)
- [FractalStat Guide](docs/fractalstat.md)
- [Experiments](docs/experiments.md)
- [Deployment](docs/deployment.md)
## π€ Contributing
Contributions are welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
## π License
MIT License - see [LICENSE](LICENSE) for details.
## π Acknowledgments
- Built on research from The Seed project
- FractalStat addressing system inspired by multi-dimensional data structures
- Semantic anchoring based on cognitive architecture principles
## π Contact
- **Project**: [The Seed](https://github.com/tiny-walnut-games/the-seed)
- **Issues**: [GitHub Issues](https://github.com/tiny-walnut-games/the-seed/issues)
- **Discussions**: [GitHub Discussions](https://github.com/tiny-walnut-games/the-seed/discussions)
---
### **Made with β€οΈ by Tiny Walnut Games**
|