warbler-cda / warbler_cda /__init__.py
Bellok's picture
Upload folder using huggingface_hub
0ccf2f0 verified
raw
history blame
4.43 kB
"""
Warbler CDA - Cognitive Development Architecture RAG System.
A production-ready RAG (Retrieval-Augmented Generation) system with FractalStat
8-dimensional addressing for intelligent document retrieval.
Features:
- Semantic anchor-based memory with provenance tracking
- FractalStat 8-dimensional addressing for hybrid scoring
- Hierarchical summarization with micro/macro distillation
- Conflict detection and resolution
- Memory pooling for performance optimization
- Production API with FastAPI
"""
__version__ = "0.1.0"
__author__ = "Tiny Walnut Games"
__license__ = "MIT"
# Core components
from .retrieval_api import (
RetrievalAPI,
RetrievalQuery,
RetrievalMode,
RetrievalResult,
ContextAssembly,
)
from .semantic_anchors import SemanticAnchorGraph
from warbler_cda.anchor_data_classes import SemanticAnchor, AnchorProvenance
from warbler_cda.anchor_memory_pool import AnchorMemoryPool, get_global_anchor_pool
from .summarization_ladder import SummarizationLadder, MicroSummary, MacroDistillation
from .conflict_detector import ConflictDetector, ConflictType, ConflictEvidence
from .castle_graph import CastleGraph
from .melt_layer import MeltLayer, MagmaStore
from .evaporation import EvaporationEngine, CloudStore
# FractalStat System (8D upgrade from 7D FractalStat)
from .fractalstat_rag_bridge import (
FractalStatRAGBridge,
FractalStatAddress,
Alignment,
Realm,
RAGDocument,
fractalstat_resonance,
compare_retrieval_results,
cosine_similarity,
generate_random_fractalstat_address,
generate_synthetic_rag_documents,
hybrid_score,
retrieve,
retrieve_semantic_only,
)
from .fractalstat_entity import (
Alignment as EntityAlignment,
DataClass,
Capability,
FractalStatCoordinates,
FractalStatEntity,
Horizon,
Polarity,
Realm as EntityRealm,
compute_adjacency_score,
hash_for_coordinates,
)
from .fractalstat_experiments import (
run_all_experiments,
)
# Backward compatibility aliases (upgrade from 7D FractalStat)
# These are already imported above, no aliases needed
# Embeddings (optional - may not be available without ML dependencies)
try:
from warbler_cda.embeddings import (
EmbeddingProvider,
EmbeddingProviderFactory,
LocalEmbeddingProvider,
OpenAIEmbeddingProvider,
SentenceTransformerEmbeddingProvider,
)
EMBEDDINGS_AVAILABLE = True
except ImportError:
# ML dependencies (torch, transformers) not available
EmbeddingProvider = None
EmbeddingProviderFactory = None
LocalEmbeddingProvider = None
OpenAIEmbeddingProvider = None
SentenceTransformerEmbeddingProvider = None
EMBEDDINGS_AVAILABLE = False
import warnings
warnings.warn(
"Embedding providers not available (torch/transformers not installed). "
"Install with: pip install torch sentence-transformers",
ImportWarning
)
__all__ = [
# Core RAG
"RetrievalAPI",
"RetrievalQuery",
"RetrievalMode",
"RetrievalResult",
"ContextAssembly",
"SemanticAnchorGraph",
"SemanticAnchor",
"AnchorProvenance",
"AnchorMemoryPool",
"get_global_anchor_pool",
"SummarizationLadder",
"MicroSummary",
"MacroDistillation",
"ConflictDetector",
"ConflictType",
"ConflictEvidence",
"CastleGraph",
"MeltLayer",
"MagmaStore",
"EvaporationEngine",
"CloudStore",
# FractalStat (8D upgrade)
"FractalStatRAGBridge",
"FractalStatAddress",
"Alignment",
"Realm",
"RAGDocument",
"fractalstat_resonance",
"compare_retrieval_results",
"cosine_similarity",
"generate_random_fractalstat_address",
"generate_synthetic_rag_documents",
"hybrid_score",
"retrieve",
"retrieve_semantic_only",
"FractalStatCoordinates",
"FractalStatEntity",
"EntityRealm",
"Horizon",
"Polarity",
"EntityAlignment",
"DataClass",
"Capability",
"compute_adjacency_score",
"hash_for_coordinates",
"run_all_experiments",
# Legacy aliases (7D FractalStat compatibility)
"FractalStatRAGBridge",
"FractalStatAddress",
"fractalstat_resonance",
"FractalStatEntity",
"FractalStatCoordinates",
# Embeddings
"EmbeddingProvider",
"EmbeddingProviderFactory",
"LocalEmbeddingProvider",
"OpenAIEmbeddingProvider",
"SentenceTransformerEmbeddingProvider",
]