""" Base Embedding Provider - Abstract Interface for Semantic Grounding """ import math import time from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional class EmbeddingProvider(ABC): """Abstract base class for embedding providers.""" def __init__(self, config: Optional[Dict[str, Any]] = None): self.config = config or {} self.provider_id = self.__class__.__name__ self.created_at = time.time() @abstractmethod def embed_text(self, text: str) -> List[float]: """Generate embedding vector for a single text.""" pass @abstractmethod def embed_batch(self, texts: List[str]) -> List[List[float]]: """Generate embedding vectors for multiple texts.""" pass @abstractmethod def get_dimension(self) -> int: """Get the dimension of embedding vectors.""" pass def calculate_similarity( self, embedding1: List[float], embedding2: List[float] ) -> float: """Calculate cosine similarity between two embeddings.""" dot_product = sum(a * b for a, b in zip(embedding1, embedding2)) magnitude1 = math.sqrt(sum(a * a for a in embedding1)) magnitude2 = math.sqrt(sum(b * b for b in embedding2)) if magnitude1 == 0 or magnitude2 == 0: return 0.0 return dot_product / (magnitude1 * magnitude2) def get_provider_info(self) -> Dict[str, Any]: """Get provider metadata.""" return { "provider_id": self.provider_id, "dimension": self.get_dimension(), "created_at": self.created_at, "config_keys": list(self.config.keys()), }