import logging from typing import Sequence import numpy as np import torch from huggingface_hub import hf_hub_download from ultralytics import YOLO from models.detectors.base import DetectionResult, ObjectDetector class HuggingFaceYoloV12BotSortDetector(ObjectDetector): """YOLOv12 model (BoT-SORT + ReID) hosted on Hugging Face.""" REPO_ID = "wish44165/YOLOv12-BoT-SORT-ReID" WEIGHT_FILE = "MOT_yolov12n.pt" def __init__(self, score_threshold: float = 0.3) -> None: self.name = "hf_yolov12_bot_sort" self.score_threshold = score_threshold self.device = "cuda:0" if torch.cuda.is_available() else "cpu" logging.info( "Loading Hugging Face YOLOv12 BoT-SORT weights %s/%s onto %s", self.REPO_ID, self.WEIGHT_FILE, self.device, ) weight_path = hf_hub_download(repo_id=self.REPO_ID, filename=self.WEIGHT_FILE) self.model = YOLO(weight_path) self.model.to(self.device) self.class_names = self.model.names def predict(self, frame: np.ndarray, queries: Sequence[str]) -> DetectionResult: device_arg = 0 if self.device.startswith("cuda") else "cpu" results = self.model.predict( source=frame, device=device_arg, conf=self.score_threshold, verbose=False, ) result = results[0] boxes = result.boxes if boxes is None or boxes.xyxy is None: empty = np.empty((0, 4), dtype=np.float32) return DetectionResult(empty, [], [], []) xyxy = boxes.xyxy.cpu().numpy() scores = boxes.conf.cpu().numpy().tolist() label_ids = boxes.cls.cpu().numpy().astype(int).tolist() label_names = [self.class_names.get(idx, f"class_{idx}") for idx in label_ids] return DetectionResult( boxes=xyxy, scores=scores, labels=label_ids, label_names=label_names, )