Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase") | |
| model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase") | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model = model.to(device) | |
| def main_generator(text): | |
| text = tokenizer.encode(text) | |
| myinput, past_key_values = torch.tensor([text]), None | |
| myinput = myinput | |
| #myinput= myinput | |
| logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) | |
| logits = logits[0,-1] | |
| probabilities = torch.nn.functional.softmax(logits) | |
| best_logits, best_indices = logits.topk(number_of_outputs) | |
| best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] | |
| return best_words | |
| inputs = [gr.Textbox(lines=1, placeholder="Text Here...", label="Input")] | |
| outputs = gr.Text( label="Insert text") | |
| title="Get the next most likely word" | |
| description = "Get the next most likely word" | |
| examples = ['I wonder'] | |
| io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples, | |
| css= """.gr-button-primary { background: -webkit-linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764; | |
| background: linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| background: -webkit-linear-gradient( | |
| 90deg, #355764 0%, #55a8a1 100% ) !important; | |
| color:white !important}""" | |
| ) | |
| io.launch() |