Spaces:
Runtime error
Runtime error
Simon Salmon
commited on
Commit
·
5097da2
1
Parent(s):
9a2be8c
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers import ElectraModel, AutoConfig, GPT2LMHeadModel
|
| 8 |
+
from transformers.activations import get_activation
|
| 9 |
+
from transformers import AutoTokenizer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
st.title('Informal to Formal')
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
st.text('''How To Make Prompt:
|
| 16 |
+
|
| 17 |
+
informal english: space is huge and needs to be explored.
|
| 18 |
+
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
|
| 19 |
+
Translated into the Style of Abraham Lincoln: space is a boundless expanse, a vast virgin domain awaiting exploration.
|
| 20 |
+
|
| 21 |
+
informal english: i am very ready to do that just that.
|
| 22 |
+
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
|
| 23 |
+
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
|
| 24 |
+
|
| 25 |
+
informal english: meteors are much harder to see, because they are only there for a fraction of a second.
|
| 26 |
+
Translated into the Style of Abraham Lincoln: meteors are not readily detectable, lasting for mere fractions of a second.
|
| 27 |
+
|
| 28 |
+
informal english:''')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 33 |
+
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln3")
|
| 34 |
+
|
| 35 |
+
with st.form(key='my_form'):
|
| 36 |
+
prompt = st.text_area(label='Enter sentence')
|
| 37 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 38 |
+
|
| 39 |
+
if submit_button:
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
text = tokenizer.encode(prompt)
|
| 42 |
+
myinput, past_key_values = torch.tensor([text]), None
|
| 43 |
+
myinput = myinput
|
| 44 |
+
myinput= myinput.to(device)
|
| 45 |
+
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
|
| 46 |
+
logits = logits[0,-1]
|
| 47 |
+
probabilities = torch.nn.functional.softmax(logits)
|
| 48 |
+
best_logits, best_indices = logits.topk(60)
|
| 49 |
+
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
|
| 50 |
+
text.append(best_indices[0].item())
|
| 51 |
+
best_probabilities = probabilities[best_indices].tolist()
|
| 52 |
+
words = []
|
| 53 |
+
st.write(best_words)
|