Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers.activations import get_activation
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
|
| 11 |
+
import math
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
st.title('GPT2:')
|
| 15 |
+
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
@st.cache(allow_output_mutation=True)
|
| 19 |
+
def get_model():
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln85Paraphrase")
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln85Paraphrase")
|
| 22 |
+
return model, tokenizer
|
| 23 |
+
|
| 24 |
+
model, tokenizer = get_model()
|
| 25 |
+
|
| 26 |
+
g = """***
|
| 27 |
+
|
| 28 |
+
original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick.
|
| 29 |
+
infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick.
|
| 30 |
+
|
| 31 |
+
***
|
| 32 |
+
|
| 33 |
+
original:"""
|
| 34 |
+
|
| 35 |
+
def prefix_format(sentence):
|
| 36 |
+
words = sentence.split()
|
| 37 |
+
if "[MASK]" in sentence:
|
| 38 |
+
words2 = words.index("[MASK]")
|
| 39 |
+
#print(words2)
|
| 40 |
+
output = ("<|SUF|> " + ' '.join(words[words2+1:]) + " <|PRE|> " + ' '.join(words[:words2]) + " <|MID|>")
|
| 41 |
+
st.write(output)
|
| 42 |
+
else:
|
| 43 |
+
st.write("Add [MASK] to sentence")
|
| 44 |
+
|
| 45 |
+
with st.form(key='my_form'):
|
| 46 |
+
prompt = st.text_area(label='Enter sentence', value=g)
|
| 47 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 48 |
+
if submit_button:
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = model(sequence, labels=input_ids)
|
| 51 |
+
loss, logits = outputs[:2]
|
| 52 |
+
perplex = math.exp(loss)
|
| 53 |
+
st.write(perplex)
|