Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -50,7 +50,6 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
| 50 |
"""
|
| 51 |
if model_id in LLAMA_PIPELINES:
|
| 52 |
return LLAMA_PIPELINES[model_id]
|
| 53 |
-
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 55 |
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
model_id,
|
|
@@ -70,10 +69,8 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
| 70 |
"""
|
| 71 |
if model_key in MUSICGEN_MODELS:
|
| 72 |
return MUSICGEN_MODELS[model_key]
|
| 73 |
-
|
| 74 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
| 75 |
processor = AutoProcessor.from_pretrained(model_key)
|
| 76 |
-
|
| 77 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 78 |
model.to(device)
|
| 79 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
|
@@ -85,7 +82,6 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
| 85 |
"""
|
| 86 |
if model_name in TTS_MODELS:
|
| 87 |
return TTS_MODELS[model_name]
|
| 88 |
-
|
| 89 |
tts_model = TTS(model_name)
|
| 90 |
TTS_MODELS[model_name] = tts_model
|
| 91 |
return tts_model
|
|
@@ -97,7 +93,7 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
| 97 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
| 98 |
"""
|
| 99 |
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
| 100 |
-
Returns a tuple
|
| 101 |
"""
|
| 102 |
try:
|
| 103 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
@@ -122,12 +118,10 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 122 |
if "Output:" in generated_text:
|
| 123 |
generated_text = generated_text.split("Output:")[-1].strip()
|
| 124 |
|
| 125 |
-
# Default placeholders
|
| 126 |
voice_script = "No voice-over script found."
|
| 127 |
sound_design = "No sound design suggestions found."
|
| 128 |
music_suggestions = "No music suggestions found."
|
| 129 |
|
| 130 |
-
# Extract Voice-Over Script
|
| 131 |
if "Voice-Over Script:" in generated_text:
|
| 132 |
parts = generated_text.split("Voice-Over Script:")
|
| 133 |
voice_script_part = parts[1]
|
|
@@ -136,7 +130,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 136 |
else:
|
| 137 |
voice_script = voice_script_part.strip()
|
| 138 |
|
| 139 |
-
# Extract Sound Design Suggestions
|
| 140 |
if "Sound Design Suggestions:" in generated_text:
|
| 141 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 142 |
sound_design_part = parts[1]
|
|
@@ -145,7 +138,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 145 |
else:
|
| 146 |
sound_design = sound_design_part.strip()
|
| 147 |
|
| 148 |
-
# Extract Music Suggestions
|
| 149 |
if "Music Suggestions:" in generated_text:
|
| 150 |
parts = generated_text.split("Music Suggestions:")
|
| 151 |
music_suggestions = parts[1].strip()
|
|
@@ -161,19 +153,17 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 161 |
@spaces.GPU(duration=100)
|
| 162 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 163 |
"""
|
| 164 |
-
Generates a voice-over from the provided script using
|
| 165 |
Returns the file path to the generated .wav file.
|
| 166 |
"""
|
| 167 |
try:
|
| 168 |
if not script.strip():
|
| 169 |
return "Error: No script provided."
|
| 170 |
-
|
| 171 |
cleaned_script = clean_text(script)
|
| 172 |
tts_model = get_tts_model(tts_model_name)
|
| 173 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 174 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 175 |
return output_path
|
| 176 |
-
|
| 177 |
except Exception as e:
|
| 178 |
return f"Error generating voice: {e}"
|
| 179 |
|
|
@@ -194,7 +184,6 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 194 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
| 195 |
|
| 196 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 197 |
-
# Process the input and move each tensor to the proper device
|
| 198 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
| 199 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 200 |
|
|
@@ -211,15 +200,12 @@ def generate_music(prompt: str, audio_length: int):
|
|
| 211 |
return f"Error generating music: {e}"
|
| 212 |
|
| 213 |
# ---------------------------------------------------------------------
|
| 214 |
-
# Audio Blending
|
| 215 |
# ---------------------------------------------------------------------
|
| 216 |
@spaces.GPU(duration=100)
|
| 217 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
| 218 |
"""
|
| 219 |
Blends two audio files (voice and music).
|
| 220 |
-
1. If music < voice, loops the music until it meets/exceeds the voice duration.
|
| 221 |
-
2. If music > voice, trims music to the voice duration.
|
| 222 |
-
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
|
| 223 |
Returns the file path to the blended .wav file.
|
| 224 |
"""
|
| 225 |
try:
|
|
@@ -228,7 +214,6 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
| 228 |
|
| 229 |
voice = AudioSegment.from_wav(voice_path)
|
| 230 |
music = AudioSegment.from_wav(music_path)
|
| 231 |
-
|
| 232 |
voice_len = len(voice)
|
| 233 |
music_len = len(music)
|
| 234 |
|
|
@@ -241,12 +226,7 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
| 241 |
if len(music) > voice_len:
|
| 242 |
music = music[:voice_len]
|
| 243 |
|
| 244 |
-
if ducking
|
| 245 |
-
ducked_music = music - duck_level
|
| 246 |
-
final_audio = ducked_music.overlay(voice)
|
| 247 |
-
else:
|
| 248 |
-
final_audio = music.overlay(voice)
|
| 249 |
-
|
| 250 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
| 251 |
final_audio.export(output_path, format="wav")
|
| 252 |
return output_path
|
|
@@ -261,19 +241,15 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
| 261 |
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
|
| 262 |
"""
|
| 263 |
Runs the full workflow as an agent:
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
Returns
|
| 269 |
"""
|
| 270 |
-
# Step 1: Generate Script
|
| 271 |
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
|
| 272 |
-
# Step 2: Generate Voice-Over
|
| 273 |
voice_file = generate_voice(voice_script, tts_model_name)
|
| 274 |
-
# Step 3: Generate Music
|
| 275 |
music_file = generate_music(music_suggestions, music_length)
|
| 276 |
-
# Step 4: Blend Audio
|
| 277 |
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
|
| 278 |
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
|
| 279 |
|
|
@@ -281,7 +257,6 @@ def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_na
|
|
| 281 |
# Gradio Interface with Enhanced UI
|
| 282 |
# ---------------------------------------------------------------------
|
| 283 |
with gr.Blocks(css="""
|
| 284 |
-
/* Global Styles */
|
| 285 |
body {
|
| 286 |
background: linear-gradient(135deg, #1d1f21, #3a3d41);
|
| 287 |
color: #f0f0f0;
|
|
@@ -328,163 +303,88 @@ with gr.Blocks(css="""
|
|
| 328 |
|
| 329 |
gr.Markdown("""
|
| 330 |
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
| 331 |
-
|
| 332 |
-
-
|
| 333 |
-
-
|
| 334 |
-
-
|
| 335 |
-
- **Audio Blending**: Seamlessly blend voice and music with options for ducking.
|
| 336 |
""")
|
| 337 |
|
| 338 |
with gr.Tabs():
|
| 339 |
# Tab 1: Script Generation
|
| 340 |
with gr.Tab("π Script Generation"):
|
| 341 |
with gr.Row():
|
| 342 |
-
user_prompt = gr.Textbox(
|
| 343 |
-
label="Promo Idea",
|
| 344 |
-
placeholder="E.g., A 30-second promo for a morning show...",
|
| 345 |
-
lines=2
|
| 346 |
-
)
|
| 347 |
with gr.Row():
|
| 348 |
-
llama_model_id = gr.Textbox(
|
| 349 |
-
|
| 350 |
-
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 351 |
-
placeholder="Enter a valid Hugging Face model ID"
|
| 352 |
-
)
|
| 353 |
-
duration = gr.Slider(
|
| 354 |
-
label="Desired Promo Duration (seconds)",
|
| 355 |
-
minimum=15,
|
| 356 |
-
maximum=60,
|
| 357 |
-
step=15,
|
| 358 |
-
value=30
|
| 359 |
-
)
|
| 360 |
generate_script_button = gr.Button("Generate Script", variant="primary")
|
| 361 |
-
script_output = gr.Textbox(label="
|
| 362 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 363 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
inputs=[user_prompt, llama_model_id, duration],
|
| 368 |
-
outputs=[script_output, sound_design_output, music_suggestion_output],
|
| 369 |
-
)
|
| 370 |
|
| 371 |
# Tab 2: Voice Synthesis
|
| 372 |
with gr.Tab("π€ Voice Synthesis"):
|
| 373 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
| 374 |
-
selected_tts_model = gr.Dropdown(
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
"tts_models/en/ljspeech/tacotron2-DDC",
|
| 378 |
-
"tts_models/en/ljspeech/vits",
|
| 379 |
-
"tts_models/en/sam/tacotron-DDC",
|
| 380 |
-
],
|
| 381 |
-
value="tts_models/en/ljspeech/tacotron2-DDC",
|
| 382 |
-
multiselect=False
|
| 383 |
-
)
|
| 384 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
| 385 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
inputs=[script_output, selected_tts_model],
|
| 390 |
-
outputs=voice_audio_output,
|
| 391 |
-
)
|
| 392 |
|
| 393 |
# Tab 3: Music Production
|
| 394 |
with gr.Tab("πΆ Music Production"):
|
| 395 |
-
gr.Markdown("Generate a custom music track using the
|
| 396 |
-
audio_length = gr.Slider(
|
| 397 |
-
label="Music Length (tokens)",
|
| 398 |
-
minimum=128,
|
| 399 |
-
maximum=1024,
|
| 400 |
-
step=64,
|
| 401 |
-
value=512,
|
| 402 |
-
info="Increase tokens for longer audio (inference time may vary)."
|
| 403 |
-
)
|
| 404 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
| 405 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
inputs=[music_suggestion_output, audio_length],
|
| 410 |
-
outputs=[music_output],
|
| 411 |
-
)
|
| 412 |
|
| 413 |
# Tab 4: Audio Blending
|
| 414 |
with gr.Tab("ποΈ Audio Blending"):
|
| 415 |
-
gr.Markdown("Blend your voice-over and music track.
|
| 416 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 417 |
-
duck_level_slider = gr.Slider(
|
| 418 |
-
label="Ducking Level (dB attenuation)",
|
| 419 |
-
minimum=0,
|
| 420 |
-
maximum=20,
|
| 421 |
-
step=1,
|
| 422 |
-
value=10
|
| 423 |
-
)
|
| 424 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
| 425 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
| 430 |
-
outputs=blended_output
|
| 431 |
-
)
|
| 432 |
|
| 433 |
# Tab 5: Agent β Full Workflow
|
| 434 |
with gr.Tab("π€ Agent"):
|
| 435 |
-
gr.Markdown("Let the agent handle everything in one go: generate
|
| 436 |
with gr.Row():
|
| 437 |
-
agent_prompt = gr.Textbox(
|
| 438 |
-
label="Ad Promo Idea",
|
| 439 |
-
placeholder="Enter your ad promo concept...",
|
| 440 |
-
lines=2
|
| 441 |
-
)
|
| 442 |
with gr.Row():
|
| 443 |
-
agent_llama_model_id = gr.Textbox(
|
| 444 |
-
|
| 445 |
-
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 446 |
-
placeholder="Enter a valid Hugging Face model ID"
|
| 447 |
-
)
|
| 448 |
-
agent_duration = gr.Slider(
|
| 449 |
-
label="Promo Duration (seconds)",
|
| 450 |
-
minimum=15, maximum=60, step=15, value=30
|
| 451 |
-
)
|
| 452 |
with gr.Row():
|
| 453 |
-
agent_tts_model = gr.Dropdown(
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
"tts_models/en/ljspeech/vits",
|
| 458 |
-
"tts_models/en/sam/tacotron-DDC",
|
| 459 |
-
],
|
| 460 |
-
value="tts_models/en/ljspeech/tacotron2-DDC",
|
| 461 |
-
multiselect=False
|
| 462 |
-
)
|
| 463 |
-
agent_music_length = gr.Slider(
|
| 464 |
-
label="Music Length (tokens)",
|
| 465 |
-
minimum=128, maximum=1024, step=64, value=512
|
| 466 |
-
)
|
| 467 |
with gr.Row():
|
| 468 |
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 469 |
-
agent_duck_level = gr.Slider(
|
| 470 |
-
label="Ducking Level (dB attenuation)",
|
| 471 |
-
minimum=0, maximum=20, step=1, value=10
|
| 472 |
-
)
|
| 473 |
agent_run_button = gr.Button("Run Agent", variant="primary")
|
| 474 |
-
agent_script_output = gr.Textbox(label="
|
| 475 |
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 476 |
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 477 |
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 478 |
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 479 |
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
-
agent_run_button.click(
|
| 482 |
-
fn=run_agent,
|
| 483 |
-
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
|
| 484 |
-
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio]
|
| 485 |
-
)
|
| 486 |
-
|
| 487 |
-
# Footer
|
| 488 |
gr.Markdown("""
|
| 489 |
<div class="footer">
|
| 490 |
<hr>
|
|
|
|
| 50 |
"""
|
| 51 |
if model_id in LLAMA_PIPELINES:
|
| 52 |
return LLAMA_PIPELINES[model_id]
|
|
|
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 54 |
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
model_id,
|
|
|
|
| 69 |
"""
|
| 70 |
if model_key in MUSICGEN_MODELS:
|
| 71 |
return MUSICGEN_MODELS[model_key]
|
|
|
|
| 72 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
| 73 |
processor = AutoProcessor.from_pretrained(model_key)
|
|
|
|
| 74 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 75 |
model.to(device)
|
| 76 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
|
|
|
| 82 |
"""
|
| 83 |
if model_name in TTS_MODELS:
|
| 84 |
return TTS_MODELS[model_name]
|
|
|
|
| 85 |
tts_model = TTS(model_name)
|
| 86 |
TTS_MODELS[model_name] = tts_model
|
| 87 |
return tts_model
|
|
|
|
| 93 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
| 94 |
"""
|
| 95 |
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
| 96 |
+
Returns a tuple: (voice_script, sound_design, music_suggestions).
|
| 97 |
"""
|
| 98 |
try:
|
| 99 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
|
|
| 118 |
if "Output:" in generated_text:
|
| 119 |
generated_text = generated_text.split("Output:")[-1].strip()
|
| 120 |
|
|
|
|
| 121 |
voice_script = "No voice-over script found."
|
| 122 |
sound_design = "No sound design suggestions found."
|
| 123 |
music_suggestions = "No music suggestions found."
|
| 124 |
|
|
|
|
| 125 |
if "Voice-Over Script:" in generated_text:
|
| 126 |
parts = generated_text.split("Voice-Over Script:")
|
| 127 |
voice_script_part = parts[1]
|
|
|
|
| 130 |
else:
|
| 131 |
voice_script = voice_script_part.strip()
|
| 132 |
|
|
|
|
| 133 |
if "Sound Design Suggestions:" in generated_text:
|
| 134 |
parts = generated_text.split("Sound Design Suggestions:")
|
| 135 |
sound_design_part = parts[1]
|
|
|
|
| 138 |
else:
|
| 139 |
sound_design = sound_design_part.strip()
|
| 140 |
|
|
|
|
| 141 |
if "Music Suggestions:" in generated_text:
|
| 142 |
parts = generated_text.split("Music Suggestions:")
|
| 143 |
music_suggestions = parts[1].strip()
|
|
|
|
| 153 |
@spaces.GPU(duration=100)
|
| 154 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
| 155 |
"""
|
| 156 |
+
Generates a voice-over from the provided script using Coqui TTS.
|
| 157 |
Returns the file path to the generated .wav file.
|
| 158 |
"""
|
| 159 |
try:
|
| 160 |
if not script.strip():
|
| 161 |
return "Error: No script provided."
|
|
|
|
| 162 |
cleaned_script = clean_text(script)
|
| 163 |
tts_model = get_tts_model(tts_model_name)
|
| 164 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
| 165 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
| 166 |
return output_path
|
|
|
|
| 167 |
except Exception as e:
|
| 168 |
return f"Error generating voice: {e}"
|
| 169 |
|
|
|
|
| 184 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
| 185 |
|
| 186 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 187 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
|
| 188 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 189 |
|
|
|
|
| 200 |
return f"Error generating music: {e}"
|
| 201 |
|
| 202 |
# ---------------------------------------------------------------------
|
| 203 |
+
# Audio Blending Function
|
| 204 |
# ---------------------------------------------------------------------
|
| 205 |
@spaces.GPU(duration=100)
|
| 206 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
| 207 |
"""
|
| 208 |
Blends two audio files (voice and music).
|
|
|
|
|
|
|
|
|
|
| 209 |
Returns the file path to the blended .wav file.
|
| 210 |
"""
|
| 211 |
try:
|
|
|
|
| 214 |
|
| 215 |
voice = AudioSegment.from_wav(voice_path)
|
| 216 |
music = AudioSegment.from_wav(music_path)
|
|
|
|
| 217 |
voice_len = len(voice)
|
| 218 |
music_len = len(music)
|
| 219 |
|
|
|
|
| 226 |
if len(music) > voice_len:
|
| 227 |
music = music[:voice_len]
|
| 228 |
|
| 229 |
+
final_audio = music.overlay(voice, gain_during_overlay=-duck_level) if ducking else music.overlay(voice)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
| 231 |
final_audio.export(output_path, format="wav")
|
| 232 |
return output_path
|
|
|
|
| 241 |
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
|
| 242 |
"""
|
| 243 |
Runs the full workflow as an agent:
|
| 244 |
+
1. Generates a script (voice-over, sound design, and music suggestions).
|
| 245 |
+
2. Synthesizes a voice-over.
|
| 246 |
+
3. Generates a music track.
|
| 247 |
+
4. Blends the voice and music.
|
| 248 |
+
Returns all generated components.
|
| 249 |
"""
|
|
|
|
| 250 |
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
|
|
|
|
| 251 |
voice_file = generate_voice(voice_script, tts_model_name)
|
|
|
|
| 252 |
music_file = generate_music(music_suggestions, music_length)
|
|
|
|
| 253 |
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
|
| 254 |
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
|
| 255 |
|
|
|
|
| 257 |
# Gradio Interface with Enhanced UI
|
| 258 |
# ---------------------------------------------------------------------
|
| 259 |
with gr.Blocks(css="""
|
|
|
|
| 260 |
body {
|
| 261 |
background: linear-gradient(135deg, #1d1f21, #3a3d41);
|
| 262 |
color: #f0f0f0;
|
|
|
|
| 303 |
|
| 304 |
gr.Markdown("""
|
| 305 |
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
|
| 306 |
+
- A compelling voice-over script (with sound design and music suggestions),
|
| 307 |
+
- A natural-sounding voice-over,
|
| 308 |
+
- Custom music tracks,
|
| 309 |
+
- And a fully blended audio promo.
|
|
|
|
| 310 |
""")
|
| 311 |
|
| 312 |
with gr.Tabs():
|
| 313 |
# Tab 1: Script Generation
|
| 314 |
with gr.Tab("π Script Generation"):
|
| 315 |
with gr.Row():
|
| 316 |
+
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show...", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
with gr.Row():
|
| 318 |
+
llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
|
| 319 |
+
duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
generate_script_button = gr.Button("Generate Script", variant="primary")
|
| 321 |
+
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
| 322 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 323 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 324 |
+
generate_script_button.click(fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
|
| 325 |
+
inputs=[user_prompt, llama_model_id, duration],
|
| 326 |
+
outputs=[script_output, sound_design_output, music_suggestion_output])
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
# Tab 2: Voice Synthesis
|
| 329 |
with gr.Tab("π€ Voice Synthesis"):
|
| 330 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
| 331 |
+
selected_tts_model = gr.Dropdown(label="TTS Model",
|
| 332 |
+
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
|
| 333 |
+
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
| 335 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 336 |
+
generate_voice_button.click(fn=lambda script, tts: generate_voice(script, tts),
|
| 337 |
+
inputs=[script_output, selected_tts_model],
|
| 338 |
+
outputs=voice_audio_output)
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
# Tab 3: Music Production
|
| 341 |
with gr.Tab("πΆ Music Production"):
|
| 342 |
+
gr.Markdown("Generate a custom music track using the MusicGen Large model.")
|
| 343 |
+
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512, info="Increase tokens for longer audio (inference time may vary).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
| 345 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 346 |
+
generate_music_button.click(fn=lambda sugg, length: generate_music(sugg, length),
|
| 347 |
+
inputs=[music_suggestion_output, audio_length],
|
| 348 |
+
outputs=[music_output])
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
# Tab 4: Audio Blending
|
| 351 |
with gr.Tab("ποΈ Audio Blending"):
|
| 352 |
+
gr.Markdown("Blend your voice-over and music track. Enable ducking to lower the music during voice segments.")
|
| 353 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 354 |
+
duck_level_slider = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
| 356 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
| 357 |
+
blend_button.click(fn=blend_audio,
|
| 358 |
+
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
| 359 |
+
outputs=blended_output)
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
# Tab 5: Agent β Full Workflow
|
| 362 |
with gr.Tab("π€ Agent"):
|
| 363 |
+
gr.Markdown("Let the agent handle everything in one go: generate script, synthesize voice, produce music, and blend the final ad.")
|
| 364 |
with gr.Row():
|
| 365 |
+
agent_prompt = gr.Textbox(label="Ad Promo Idea", placeholder="Enter your ad promo concept...", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
with gr.Row():
|
| 367 |
+
agent_llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
|
| 368 |
+
agent_duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
with gr.Row():
|
| 370 |
+
agent_tts_model = gr.Dropdown(label="TTS Model",
|
| 371 |
+
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
|
| 372 |
+
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
|
| 373 |
+
agent_music_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
with gr.Row():
|
| 375 |
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
|
| 376 |
+
agent_duck_level = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
|
|
|
|
|
|
|
|
|
|
| 377 |
agent_run_button = gr.Button("Run Agent", variant="primary")
|
| 378 |
+
agent_script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
|
| 379 |
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
| 380 |
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
| 381 |
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
| 382 |
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
| 383 |
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
| 384 |
+
agent_run_button.click(fn=run_agent,
|
| 385 |
+
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
|
| 386 |
+
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio])
|
| 387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
gr.Markdown("""
|
| 389 |
<div class="footer">
|
| 390 |
<hr>
|