Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,25 +35,19 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 35 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 36 |
|
| 37 |
system_prompt = (
|
| 38 |
-
"You are an expert radio imaging producer specializing in sound design and music
|
| 39 |
-
"
|
| 40 |
-
f"
|
| 41 |
-
"---\n"
|
| 42 |
-
"Ensure the script fits within the time limit and suggest a matching music style that complements the theme."
|
| 43 |
)
|
| 44 |
|
| 45 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:"
|
| 46 |
-
result = llama_pipeline(combined_prompt, max_new_tokens=
|
| 47 |
-
|
| 48 |
-
generated_text = result[0]["generated_text"]
|
| 49 |
-
if "
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
return script.strip(), music_suggestion.strip()
|
| 54 |
-
else:
|
| 55 |
-
return parts.strip(), "No specific music suggestion found."
|
| 56 |
-
return "Error: Could not parse the script.", None
|
| 57 |
except Exception as e:
|
| 58 |
return f"Error generating script: {e}", None
|
| 59 |
|
|
@@ -61,9 +55,10 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
| 61 |
# Voice-Over Generation Function
|
| 62 |
# ---------------------------------------------------------------------
|
| 63 |
@spaces.GPU(duration=300)
|
| 64 |
-
def generate_voice(script: str):
|
| 65 |
try:
|
| 66 |
-
|
|
|
|
| 67 |
processor = AutoProcessor.from_pretrained(tts_model)
|
| 68 |
model = AutoModelForCausalLM.from_pretrained(tts_model)
|
| 69 |
|
|
@@ -125,64 +120,66 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool):
|
|
| 125 |
# ---------------------------------------------------------------------
|
| 126 |
with gr.Blocks() as demo:
|
| 127 |
gr.Markdown("""
|
| 128 |
-
# π§ AI Promo Studio with
|
| 129 |
-
|
| 130 |
""")
|
| 131 |
|
| 132 |
-
with gr.
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
| 186 |
|
| 187 |
gr.Markdown("""
|
| 188 |
<hr>
|
|
|
|
| 35 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 36 |
|
| 37 |
system_prompt = (
|
| 38 |
+
f"You are an expert radio imaging producer specializing in sound design and music. "
|
| 39 |
+
f"Based on the user's concept and the selected duration of {duration} seconds, craft a concise, engaging promo script. "
|
| 40 |
+
f"Ensure the script fits within the time limit and suggest a matching music style that complements the theme."
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:"
|
| 44 |
+
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
| 45 |
+
|
| 46 |
+
generated_text = result[0]["generated_text"].split("Refined script and music suggestion:")[-1].strip()
|
| 47 |
+
if "Music Suggestion:" in generated_text:
|
| 48 |
+
script, music_suggestion = generated_text.split("Music Suggestion:")
|
| 49 |
+
return script.strip(), music_suggestion.strip()
|
| 50 |
+
return generated_text, "No specific music suggestion found."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
return f"Error generating script: {e}", None
|
| 53 |
|
|
|
|
| 55 |
# Voice-Over Generation Function
|
| 56 |
# ---------------------------------------------------------------------
|
| 57 |
@spaces.GPU(duration=300)
|
| 58 |
+
def generate_voice(script: str, speaker: str):
|
| 59 |
try:
|
| 60 |
+
# Replace with your chosen TTS model
|
| 61 |
+
tts_model = "coqui/XTTS-v2"
|
| 62 |
processor = AutoProcessor.from_pretrained(tts_model)
|
| 63 |
model = AutoModelForCausalLM.from_pretrained(tts_model)
|
| 64 |
|
|
|
|
| 120 |
# ---------------------------------------------------------------------
|
| 121 |
with gr.Blocks() as demo:
|
| 122 |
gr.Markdown("""
|
| 123 |
+
# π§ AI Promo Studio with Step-by-Step Script, Voice, Music, and Mixing π
|
| 124 |
+
Generate and mix radio promos effortlessly with AI tools!
|
| 125 |
""")
|
| 126 |
|
| 127 |
+
with gr.Row():
|
| 128 |
+
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.")
|
| 129 |
+
llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct")
|
| 130 |
+
duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
|
| 131 |
+
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
| 132 |
+
speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.")
|
| 133 |
+
ducking = gr.Checkbox(label="Enable Ducking", value=True)
|
| 134 |
+
|
| 135 |
+
generate_script_button = gr.Button("Generate Script")
|
| 136 |
+
script_output = gr.Textbox(label="Generated Script")
|
| 137 |
+
music_suggestion_output = gr.Textbox(label="Music Suggestion")
|
| 138 |
+
|
| 139 |
+
generate_voice_button = gr.Button("Generate Voice")
|
| 140 |
+
voice_output = gr.Audio(label="Generated Voice", type="filepath")
|
| 141 |
+
|
| 142 |
+
generate_music_button = gr.Button("Generate Music")
|
| 143 |
+
music_output = gr.Audio(label="Generated Music", type="filepath")
|
| 144 |
+
|
| 145 |
+
blend_button = gr.Button("Blend Audio")
|
| 146 |
+
final_output = gr.Audio(label="Final Promo Audio", type="filepath")
|
| 147 |
+
|
| 148 |
+
def step_generate_script(user_prompt, model_id, duration):
|
| 149 |
+
return generate_script(user_prompt, model_id, hf_token, duration)
|
| 150 |
+
|
| 151 |
+
def step_generate_voice(script, speaker):
|
| 152 |
+
return generate_voice(script, speaker)
|
| 153 |
+
|
| 154 |
+
def step_generate_music(music_suggestion, audio_length):
|
| 155 |
+
return generate_music(music_suggestion, audio_length)
|
| 156 |
+
|
| 157 |
+
def step_blend_audio(voice_path, music_path, ducking):
|
| 158 |
+
return blend_audio(voice_path, music_path, ducking)
|
| 159 |
+
|
| 160 |
+
generate_script_button.click(
|
| 161 |
+
fn=lambda user_prompt, model_id, duration: generate_script(user_prompt, model_id, hf_token, duration),
|
| 162 |
+
inputs=[user_prompt, llama_model_id, duration],
|
| 163 |
+
outputs=[script_output, music_suggestion_output],
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
generate_voice_button.click(
|
| 167 |
+
fn=step_generate_voice,
|
| 168 |
+
inputs=[script_output, speaker],
|
| 169 |
+
outputs=[voice_output],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
generate_music_button.click(
|
| 173 |
+
fn=step_generate_music,
|
| 174 |
+
inputs=[music_suggestion_output, audio_length],
|
| 175 |
+
outputs=[music_output],
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
blend_button.click(
|
| 179 |
+
fn=step_blend_audio,
|
| 180 |
+
inputs=[voice_output, music_output, ducking],
|
| 181 |
+
outputs=[final_output],
|
| 182 |
+
)
|
| 183 |
|
| 184 |
gr.Markdown("""
|
| 185 |
<hr>
|