Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,369 Bytes
2020627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import spaces
import os
import sys
import tempfile
import shutil
from PIL import Image, ImageDraw, ImageFont, ImageOps
import fitz
import re
import warnings
import numpy as np
import base64
from io import StringIO, BytesIO
MODEL_NAME = 'deepseek-ai/DeepSeek-OCR'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModel.from_pretrained(MODEL_NAME, _attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, trust_remote_code=True, use_safetensors=True)
model = model.eval().cuda()
MODEL_CONFIGS = {
"Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}
}
TASK_PROMPTS = {
"📋 Markdown": {"prompt": "<image>\n<|grounding|>Convert the document to markdown.", "has_grounding": True},
"📝 Free OCR": {"prompt": "<image>\nFree OCR.", "has_grounding": False},
"📍 Locate": {"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True},
"🔍 Describe": {"prompt": "<image>\nDescribe this image in detail.", "has_grounding": False},
"✏️ Custom": {"prompt": "", "has_grounding": False}
}
def extract_grounding_references(text):
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
return re.findall(pattern, text, re.DOTALL)
def draw_bounding_boxes(image, refs, extract_images=False):
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
draw2 = ImageDraw.Draw(overlay)
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 30)
crops = []
color_map = {}
np.random.seed(42)
for ref in refs:
label = ref[1]
if label not in color_map:
color_map[label] = (np.random.randint(50, 255), np.random.randint(50, 255), np.random.randint(50, 255))
color = color_map[label]
coords = eval(ref[2])
color_a = color + (60,)
for box in coords:
x1, y1, x2, y2 = int(box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h)
if extract_images and label == 'image':
crops.append(image.crop((x1, y1, x2, y2)))
width = 5 if label == 'title' else 3
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
draw2.rectangle([x1, y1, x2, y2], fill=color_a)
text_bbox = draw.textbbox((0, 0), label, font=font)
tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
ty = max(0, y1 - 20)
draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
img_draw.paste(overlay, (0, 0), overlay)
return img_draw, crops
def clean_output(text, include_images=False):
if not text:
return ""
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
img_num = 0
for match in matches:
if '<|ref|>image<|/ref|>' in match[0]:
if include_images:
text = text.replace(match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
img_num += 1
else:
text = text.replace(match[0], '', 1)
else:
text = re.sub(rf'(?m)^[^\n]*{re.escape(match[0])}[^\n]*\n?', '', text)
return text.strip()
def embed_images(markdown, crops):
if not crops:
return markdown
for i, img in enumerate(crops):
buf = BytesIO()
img.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
markdown = markdown.replace(f'**[Figure {i + 1}]**', f'\n\n\n\n', 1)
return markdown
@spaces.GPU(duration=60)
def process_image(image, mode, task, custom_prompt):
if image is None:
return " Error Upload image", "", "", None, []
if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip():
return "Enter prompt", "", "", None, []
if image.mode in ('RGBA', 'LA', 'P'):
image = image.convert('RGB')
image = ImageOps.exif_transpose(image)
config = MODEL_CONFIGS[mode]
if task == "✏️ Custom":
prompt = f"<image>\n{custom_prompt.strip()}"
has_grounding = '<|grounding|>' in custom_prompt
elif task == "📍 Locate":
prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
has_grounding = True
else:
prompt = TASK_PROMPTS[task]["prompt"]
has_grounding = TASK_PROMPTS[task]["has_grounding"]
tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
image.save(tmp.name, 'JPEG', quality=95)
tmp.close()
out_dir = tempfile.mkdtemp()
stdout = sys.stdout
sys.stdout = StringIO()
model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir,
base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"])
result = '\n'.join([l for l in sys.stdout.getvalue().split('\n')
if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
sys.stdout = stdout
os.unlink(tmp.name)
shutil.rmtree(out_dir, ignore_errors=True)
if not result:
return "No text", "", "", None, []
cleaned = clean_output(result, False)
markdown = clean_output(result, True)
img_out = None
crops = []
if has_grounding and '<|ref|>' in result:
refs = extract_grounding_references(result)
if refs:
img_out, crops = draw_bounding_boxes(image, refs, True)
markdown = embed_images(markdown, crops)
return cleaned, markdown, result, img_out, crops
@spaces.GPU(duration=60)
def process_pdf(path, mode, task, custom_prompt, page_num):
doc = fitz.open(path)
total_pages = len(doc)
# Process all pages
all_cleaned = []
all_markdown = []
all_raw = []
all_crops = []
img_out = None
for page_idx in range(total_pages):
page = doc.load_page(page_idx)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
cleaned, markdown, result, page_img_out, page_crops = process_image(img, mode, task, custom_prompt)
if page_idx == 0:
# Use first page's error message if there's an error
if cleaned.startswith(" Error") or cleaned.startswith("Enter prompt") or cleaned == "No text":
doc.close()
return cleaned, "", "", None, []
all_cleaned.append(cleaned)
all_markdown.append(markdown)
all_raw.append(result)
all_crops.extend(page_crops)
# Use the last page's bounding boxes image, or first if available
if page_img_out is not None:
img_out = page_img_out
doc.close()
# Combine results from all pages
combined_cleaned = "\n\n--- Page Break ---\n\n".join(all_cleaned)
combined_markdown = "\n\n--- Page Break ---\n\n".join(all_markdown)
combined_raw = "\n\n--- Page Break ---\n\n".join(all_raw)
return combined_cleaned, combined_markdown, combined_raw, img_out, all_crops
def process_file(path, mode, task, custom_prompt, page_num):
if not path:
return "Error Upload file", "", "", None, []
if path.lower().endswith('.pdf'):
return process_pdf(path, mode, task, custom_prompt, page_num)
else:
return process_image(Image.open(path), mode, task, custom_prompt)
def toggle_prompt(task):
if task == "✏️ Custom":
return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
elif task == "📍 Locate":
return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
return gr.update(visible=False)
def select_boxes(task):
if task == "📍 Locate":
return gr.update(selected="tab_boxes")
return gr.update()
def get_pdf_page_count(file_path):
if not file_path or not file_path.lower().endswith('.pdf'):
return 1
doc = fitz.open(file_path)
count = len(doc)
doc.close()
return count
def load_image(file_path, page_num=1):
if not file_path:
return None
if file_path.lower().endswith('.pdf'):
doc = fitz.open(file_path)
page_idx = max(0, min(int(page_num) - 1, len(doc) - 1))
page = doc.load_page(page_idx)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
doc.close()
return img
else:
return Image.open(file_path)
def update_page_selector(file_path):
if not file_path:
return gr.update(visible=False)
if file_path.lower().endswith('.pdf'):
page_count = get_pdf_page_count(file_path)
return gr.update(visible=True, maximum=page_count, value=1, minimum=1,
label=f"Select Page (1-{page_count})")
return gr.update(visible=False)
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo:
gr.Markdown("""
# 🚀 DeepSeek-OCR
**Document parser with OCR capabilities. Process multi-page PDFs and images to extract text, convert to markdown, or locate specific content with bounding boxes.**
""")
with gr.Row():
with gr.Column(scale=1):
file_in = gr.File(label="Upload Image or PDF", file_types=["image", ".pdf"], type="filepath")
input_img = gr.Image(label="Input Image", type="pil", height=300)
page_selector = gr.Number(label="Select Page", value=1, minimum=1, step=1, visible=False)
mode = gr.Dropdown(list(MODEL_CONFIGS.keys()), value="Gundam", label="Mode")
task = gr.Dropdown(list(TASK_PROMPTS.keys()), value="📋 Markdown", label="Task")
prompt = gr.Textbox(label="Prompt", lines=2, visible=False)
btn = gr.Button("Extract", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.Tab("Text", id="tab_text"):
text_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False)
with gr.Tab("Markdown Preview", id="tab_markdown"):
md_out = gr.Markdown("")
with gr.Tab("Boxes", id="tab_boxes"):
img_out = gr.Image(type="pil", height=500, show_label=False)
with gr.Tab("Cropped Images", id="tab_crops"):
gallery = gr.Gallery(show_label=False, columns=3, height=400)
with gr.Tab("Raw Text", id="tab_raw"):
raw_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False)
file_in.change(load_image, [file_in, page_selector], [input_img])
file_in.change(update_page_selector, [file_in], [page_selector])
page_selector.change(load_image, [file_in, page_selector], [input_img])
task.change(toggle_prompt, [task], [prompt])
task.change(select_boxes, [task], [tabs])
def run(image, file_path, mode, task, custom_prompt, page_num):
if file_path:
return process_file(file_path, mode, task, custom_prompt, int(page_num))
if image is not None:
return process_image(image, mode, task, custom_prompt)
return "Error uploading file or image", "", "", None, []
submit_event = btn.click(run, [input_img, file_in, mode, task, prompt, page_selector],
[text_out, md_out, raw_out, img_out, gallery])
submit_event.then(select_boxes, [task], [tabs])
if __name__ == "__main__":
demo.queue(max_size=20).launch() |