import gradio as gr from transformers import AutoModel, AutoTokenizer import torch import spaces import os import sys import tempfile import shutil from PIL import Image, ImageDraw, ImageFont, ImageOps import fitz import re import warnings import numpy as np import base64 from io import StringIO, BytesIO MODEL_NAME = 'deepseek-ai/DeepSeek-OCR' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) model = AutoModel.from_pretrained(MODEL_NAME, _attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, trust_remote_code=True, use_safetensors=True) model = model.eval().cuda() MODEL_CONFIGS = { "Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True}, "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, "Small": {"base_size": 640, "image_size": 640, "crop_mode": False}, "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False} } TASK_PROMPTS = { "📋 Markdown": {"prompt": "\n<|grounding|>Convert the document to markdown.", "has_grounding": True}, "📝 Free OCR": {"prompt": "\nFree OCR.", "has_grounding": False}, "📍 Locate": {"prompt": "\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True}, "🔍 Describe": {"prompt": "\nDescribe this image in detail.", "has_grounding": False}, "✏️ Custom": {"prompt": "", "has_grounding": False} } def extract_grounding_references(text): pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)' return re.findall(pattern, text, re.DOTALL) def draw_bounding_boxes(image, refs, extract_images=False): img_w, img_h = image.size img_draw = image.copy() draw = ImageDraw.Draw(img_draw) overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0)) draw2 = ImageDraw.Draw(overlay) font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 30) crops = [] color_map = {} np.random.seed(42) for ref in refs: label = ref[1] if label not in color_map: color_map[label] = (np.random.randint(50, 255), np.random.randint(50, 255), np.random.randint(50, 255)) color = color_map[label] coords = eval(ref[2]) color_a = color + (60,) for box in coords: x1, y1, x2, y2 = int(box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h) if extract_images and label == 'image': crops.append(image.crop((x1, y1, x2, y2))) width = 5 if label == 'title' else 3 draw.rectangle([x1, y1, x2, y2], outline=color, width=width) draw2.rectangle([x1, y1, x2, y2], fill=color_a) text_bbox = draw.textbbox((0, 0), label, font=font) tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] ty = max(0, y1 - 20) draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color) draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255)) img_draw.paste(overlay, (0, 0), overlay) return img_draw, crops def clean_output(text, include_images=False): if not text: return "" pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)' matches = re.findall(pattern, text, re.DOTALL) img_num = 0 for match in matches: if '<|ref|>image<|/ref|>' in match[0]: if include_images: text = text.replace(match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1) img_num += 1 else: text = text.replace(match[0], '', 1) else: text = re.sub(rf'(?m)^[^\n]*{re.escape(match[0])}[^\n]*\n?', '', text) return text.strip() def embed_images(markdown, crops): if not crops: return markdown for i, img in enumerate(crops): buf = BytesIO() img.save(buf, format="PNG") b64 = base64.b64encode(buf.getvalue()).decode() markdown = markdown.replace(f'**[Figure {i + 1}]**', f'\n\n![Figure {i + 1}](data:image/png;base64,{b64})\n\n', 1) return markdown @spaces.GPU(duration=60) def process_image(image, mode, task, custom_prompt): if image is None: return " Error Upload image", "", "", None, [] if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip(): return "Enter prompt", "", "", None, [] if image.mode in ('RGBA', 'LA', 'P'): image = image.convert('RGB') image = ImageOps.exif_transpose(image) config = MODEL_CONFIGS[mode] if task == "✏️ Custom": prompt = f"\n{custom_prompt.strip()}" has_grounding = '<|grounding|>' in custom_prompt elif task == "📍 Locate": prompt = f"\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image." has_grounding = True else: prompt = TASK_PROMPTS[task]["prompt"] has_grounding = TASK_PROMPTS[task]["has_grounding"] tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') image.save(tmp.name, 'JPEG', quality=95) tmp.close() out_dir = tempfile.mkdtemp() stdout = sys.stdout sys.stdout = StringIO() model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir, base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"]) result = '\n'.join([l for l in sys.stdout.getvalue().split('\n') if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip() sys.stdout = stdout os.unlink(tmp.name) shutil.rmtree(out_dir, ignore_errors=True) if not result: return "No text", "", "", None, [] cleaned = clean_output(result, False) markdown = clean_output(result, True) img_out = None crops = [] if has_grounding and '<|ref|>' in result: refs = extract_grounding_references(result) if refs: img_out, crops = draw_bounding_boxes(image, refs, True) markdown = embed_images(markdown, crops) return cleaned, markdown, result, img_out, crops @spaces.GPU(duration=60) def process_pdf(path, mode, task, custom_prompt, page_num): doc = fitz.open(path) total_pages = len(doc) # Process all pages all_cleaned = [] all_markdown = [] all_raw = [] all_crops = [] img_out = None for page_idx in range(total_pages): page = doc.load_page(page_idx) pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False) img = Image.open(BytesIO(pix.tobytes("png"))) cleaned, markdown, result, page_img_out, page_crops = process_image(img, mode, task, custom_prompt) if page_idx == 0: # Use first page's error message if there's an error if cleaned.startswith(" Error") or cleaned.startswith("Enter prompt") or cleaned == "No text": doc.close() return cleaned, "", "", None, [] all_cleaned.append(cleaned) all_markdown.append(markdown) all_raw.append(result) all_crops.extend(page_crops) # Use the last page's bounding boxes image, or first if available if page_img_out is not None: img_out = page_img_out doc.close() # Combine results from all pages combined_cleaned = "\n\n--- Page Break ---\n\n".join(all_cleaned) combined_markdown = "\n\n--- Page Break ---\n\n".join(all_markdown) combined_raw = "\n\n--- Page Break ---\n\n".join(all_raw) return combined_cleaned, combined_markdown, combined_raw, img_out, all_crops def process_file(path, mode, task, custom_prompt, page_num): if not path: return "Error Upload file", "", "", None, [] if path.lower().endswith('.pdf'): return process_pdf(path, mode, task, custom_prompt, page_num) else: return process_image(Image.open(path), mode, task, custom_prompt) def toggle_prompt(task): if task == "✏️ Custom": return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes") elif task == "📍 Locate": return gr.update(visible=True, label="Text to Locate", placeholder="Enter text") return gr.update(visible=False) def select_boxes(task): if task == "📍 Locate": return gr.update(selected="tab_boxes") return gr.update() def get_pdf_page_count(file_path): if not file_path or not file_path.lower().endswith('.pdf'): return 1 doc = fitz.open(file_path) count = len(doc) doc.close() return count def load_image(file_path, page_num=1): if not file_path: return None if file_path.lower().endswith('.pdf'): doc = fitz.open(file_path) page_idx = max(0, min(int(page_num) - 1, len(doc) - 1)) page = doc.load_page(page_idx) pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False) img = Image.open(BytesIO(pix.tobytes("png"))) doc.close() return img else: return Image.open(file_path) def update_page_selector(file_path): if not file_path: return gr.update(visible=False) if file_path.lower().endswith('.pdf'): page_count = get_pdf_page_count(file_path) return gr.update(visible=True, maximum=page_count, value=1, minimum=1, label=f"Select Page (1-{page_count})") return gr.update(visible=False) with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo: gr.Markdown(""" # 🚀 DeepSeek-OCR **Document parser with OCR capabilities. Process multi-page PDFs and images to extract text, convert to markdown, or locate specific content with bounding boxes.** """) with gr.Row(): with gr.Column(scale=1): file_in = gr.File(label="Upload Image or PDF", file_types=["image", ".pdf"], type="filepath") input_img = gr.Image(label="Input Image", type="pil", height=300) page_selector = gr.Number(label="Select Page", value=1, minimum=1, step=1, visible=False) mode = gr.Dropdown(list(MODEL_CONFIGS.keys()), value="Gundam", label="Mode") task = gr.Dropdown(list(TASK_PROMPTS.keys()), value="📋 Markdown", label="Task") prompt = gr.Textbox(label="Prompt", lines=2, visible=False) btn = gr.Button("Extract", variant="primary", size="lg") with gr.Column(scale=2): with gr.Tabs() as tabs: with gr.Tab("Text", id="tab_text"): text_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False) with gr.Tab("Markdown Preview", id="tab_markdown"): md_out = gr.Markdown("") with gr.Tab("Boxes", id="tab_boxes"): img_out = gr.Image(type="pil", height=500, show_label=False) with gr.Tab("Cropped Images", id="tab_crops"): gallery = gr.Gallery(show_label=False, columns=3, height=400) with gr.Tab("Raw Text", id="tab_raw"): raw_out = gr.Textbox(lines=20, show_copy_button=True, show_label=False) file_in.change(load_image, [file_in, page_selector], [input_img]) file_in.change(update_page_selector, [file_in], [page_selector]) page_selector.change(load_image, [file_in, page_selector], [input_img]) task.change(toggle_prompt, [task], [prompt]) task.change(select_boxes, [task], [tabs]) def run(image, file_path, mode, task, custom_prompt, page_num): if file_path: return process_file(file_path, mode, task, custom_prompt, int(page_num)) if image is not None: return process_image(image, mode, task, custom_prompt) return "Error uploading file or image", "", "", None, [] submit_event = btn.click(run, [input_img, file_in, mode, task, prompt, page_selector], [text_out, md_out, raw_out, img_out, gallery]) submit_event.then(select_boxes, [task], [tabs]) if __name__ == "__main__": demo.queue(max_size=20).launch()