Spaces:
Sleeping
Sleeping
File size: 2,698 Bytes
581ef41 8937d8e 581ef41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
title: Food Recognition API
emoji: π
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.44.1
app_file: app.py
pinned: false
license: mit
short_description: FastAPI food recognition service
---
# π Food Recognition API
A FastAPI web service that uses a Vision Transformer model to recognize 10 different types of food from images.
## π― Features
- **FastAPI Backend** - RESTful API with comprehensive endpoints
- **Gradio Interface** - User-friendly web interface
- **Vision Transformer** - State-of-the-art image classification
- **Real-time Predictions** - Instant food recognition
- **Multiple Input Methods** - File upload and base64 support
## π½οΈ Supported Food Types
1. Apple Pie
2. Caesar Salad
3. Chocolate Cake
4. Cup Cakes
5. Donuts
6. Hamburger
7. Ice Cream
8. Pancakes
9. Pizza
10. Waffles
## π‘ API Endpoints
- **`/`** - Gradio web interface
- **`/health`** - Health check and model status
- **`/classes`** - Get supported food classes
- **`/model-info`** - Detailed model information
- **`/docs`** - Interactive API documentation
## π Usage
### Web Interface
Simply upload an image using the Gradio interface above!
### API Usage
```python
import requests
# Upload image file
with open('food_image.jpg', 'rb') as f:
files = {'file': f}
response = requests.post('https://your-space-url.hf.space/predict', files=files)
result = response.json()
print(result)
```
### Health Check
```bash
curl https://your-space-url.hf.space/health
```
## π Model Performance
- **Accuracy**: 68%
- **F1 Score**: 66.5%
- **Architecture**: Vision Transformer (ViT-Base)
- **Training Data**: Custom food dataset
- **Classes**: 10 food categories
## π§ Technical Details
- **Framework**: FastAPI + Gradio
- **Model**: Hugging Face Transformers
- **Backend**: PyTorch
- **Deployment**: Hugging Face Spaces
## π Model Information
- **Model ID**: `BinhQuocNguyen/food-recognition-vit`
- **Model URL**: https://huggingface.co/BinhQuocNguyen/food-recognition-vit
- **Training Time**: ~84 minutes
- **Image Size**: 224x224 pixels
## π οΈ Local Development
```bash
# Clone the repository
git clone https://github.com/your-username/food-recognition-api
# Install dependencies
pip install -r requirements_spaces.txt
# Run locally
python app.py
```
## π License
MIT License - Feel free to use and modify for your projects.
## π€ Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## π Support
If you encounter any issues or have questions, please open an issue on the repository.
|