Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,29 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import tensorflow as tf
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def predict_digit(image):
|
| 9 |
-
# Convert to grayscale if needed
|
| 10 |
if image.ndim == 3:
|
| 11 |
image = image[..., 0]
|
| 12 |
-
# Resize and preprocess
|
| 13 |
image = np.array(image).astype("float32")
|
| 14 |
image = image.reshape(1, 28, 28)
|
| 15 |
image = image / 255.0
|
|
@@ -18,7 +32,7 @@ def predict_digit(image):
|
|
| 18 |
|
| 19 |
iface = gr.Interface(
|
| 20 |
fn=predict_digit,
|
| 21 |
-
inputs=gr.Image(
|
| 22 |
outputs=gr.Label(num_top_classes=1),
|
| 23 |
title="MNIST Digit Classifier",
|
| 24 |
description="Draw a digit (0-9) and the model will predict it."
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
import tensorflow as tf
|
| 4 |
+
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
+
MODEL_URL = "https://drive.google.com/uc?export=download&id=1ECjloRVUkgnKACeBZA06UU_-JddZQ5Z5"
|
| 8 |
+
MODEL_PATH = "my_mnist_model.keras"
|
| 9 |
+
|
| 10 |
+
def download_file_from_google_drive(url, destination):
|
| 11 |
+
if not os.path.exists(destination):
|
| 12 |
+
print("Downloading model from Google Drive...")
|
| 13 |
+
response = requests.get(url, stream=True)
|
| 14 |
+
with open(destination, "wb") as f:
|
| 15 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 16 |
+
if chunk:
|
| 17 |
+
f.write(chunk)
|
| 18 |
+
print("Download complete.")
|
| 19 |
+
|
| 20 |
+
download_file_from_google_drive(MODEL_URL, MODEL_PATH)
|
| 21 |
+
|
| 22 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
| 23 |
|
| 24 |
def predict_digit(image):
|
|
|
|
| 25 |
if image.ndim == 3:
|
| 26 |
image = image[..., 0]
|
|
|
|
| 27 |
image = np.array(image).astype("float32")
|
| 28 |
image = image.reshape(1, 28, 28)
|
| 29 |
image = image / 255.0
|
|
|
|
| 32 |
|
| 33 |
iface = gr.Interface(
|
| 34 |
fn=predict_digit,
|
| 35 |
+
inputs=gr.Image(image_mode='L', source="canvas", tool="editor", height=28, width=28),
|
| 36 |
outputs=gr.Label(num_top_classes=1),
|
| 37 |
title="MNIST Digit Classifier",
|
| 38 |
description="Draw a digit (0-9) and the model will predict it."
|