Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from torchvision import transforms | |
| from PIL import Image, ImageFilter | |
| import gradio as gr | |
| import numpy as np | |
| import os | |
| import uuid | |
| from model import model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| transform = transforms.Compose([ | |
| transforms.Resize((128, 128)), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,), (0.5,)) | |
| ]) | |
| resize_transform = transforms.Resize((512, 512)) | |
| def load_image(image): | |
| image = Image.fromarray(image).convert('RGB') | |
| image = transform(image) | |
| return image.unsqueeze(0).to(device) | |
| def interpolate_vectors(v1, v2, num_steps): | |
| return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)] | |
| def infer_and_interpolate(image1, image2, num_interpolations=24): | |
| image1 = load_image(image1) | |
| image2 = load_image(image2) | |
| with torch.no_grad(): | |
| mu1, logvar1 = model.encode(image1) | |
| mu2, logvar2 = model.encode(image2) | |
| interpolated_vectors = interpolate_vectors(mu1, mu2, num_interpolations) | |
| decoded_images = [model.decode(vec).squeeze(0) for vec in interpolated_vectors] | |
| return decoded_images | |
| def create_gif(decoded_images, duration=200, apply_blur=False): | |
| reversed_images = decoded_images[::-1] | |
| all_images = decoded_images + reversed_images | |
| pil_images = [] | |
| for img in all_images: | |
| img = (img - img.min()) / (img.max() - img.min()) | |
| img = (img * 255).byte() | |
| pil_img = transforms.ToPILImage()(img.cpu()).convert("RGB") | |
| pil_img = resize_transform(pil_img) | |
| if apply_blur: | |
| pil_img = pil_img.filter(ImageFilter.GaussianBlur(radius=1)) | |
| pil_images.append(pil_img) | |
| gif_filename = f"/tmp/morphing_{uuid.uuid4().hex}.gif" | |
| pil_images[0].save(gif_filename, save_all=True, append_images=pil_images[1:], duration=duration, loop=0) | |
| return gif_filename | |
| def create_morphing_gif(image1, image2, num_interpolations=24, duration=200): | |
| decoded_images = infer_and_interpolate(image1, image2, num_interpolations) | |
| gif_path = create_gif(decoded_images, duration) | |
| return gif_path | |
| examples = [ | |
| ["example_images/image1.jpg", "example_images/image2.png", 24, 200], | |
| ["example_images/image3.jpg", "example_images/image4.jpg", 30, 150], | |
| ] | |
| with gr.Blocks() as morphing: | |
| with gr.Column(): | |
| with gr.Column(): | |
| num_interpolations = gr.Slider(minimum=2, maximum=50, value=24, step=1, label="Number of interpolations") | |
| duration = gr.Slider(minimum=100, maximum=1000, value=200, step=50, label="Duration per frame (ms)") | |
| generate_button = gr.Button("Generate Morphing GIF") | |
| output_gif = gr.Image(label="Morphing GIF") | |
| with gr.Row(): | |
| image1 = gr.Image(label="Upload first image", type="numpy") | |
| image2 = gr.Image(label="Upload second image", type="numpy") | |
| generate_button.click(fn=create_morphing_gif, inputs=[image1, image2, num_interpolations, duration], outputs=output_gif) | |
| gr.Examples(examples=examples, inputs=[image1, image2, num_interpolations, duration]) | |