Spaces:
Sleeping
Sleeping
Update vae.py
Browse files
vae.py
CHANGED
|
@@ -1,58 +1,59 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from torchvision import transforms
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
transforms.
|
| 13 |
-
transforms.
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
image =
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
decoded_image =
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
decoded_image =
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
["example_images/
|
| 44 |
-
["example_images/
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
from model import model
|
| 8 |
+
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
+
transform1 = transforms.Compose([
|
| 12 |
+
transforms.Resize((128, 128)), # Resize the image to 128x128 for the model
|
| 13 |
+
transforms.ToTensor(),
|
| 14 |
+
transforms.Normalize((0.5,), (0.5,))
|
| 15 |
+
])
|
| 16 |
+
|
| 17 |
+
transform2 = transforms.Compose([
|
| 18 |
+
transforms.Resize((512, 512)) # Resize the image to 512x512 for display
|
| 19 |
+
])
|
| 20 |
+
|
| 21 |
+
def load_image(image):
|
| 22 |
+
image = Image.fromarray(image).convert('RGB')
|
| 23 |
+
image = transform1(image)
|
| 24 |
+
return image.unsqueeze(0).to(device)
|
| 25 |
+
|
| 26 |
+
def infer_image(image, noise_level):
|
| 27 |
+
image = load_image(image)
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
mu, logvar = model.encode(image)
|
| 30 |
+
std = torch.exp(0.5 * logvar)
|
| 31 |
+
eps = torch.randn_like(std) * noise_level
|
| 32 |
+
z = mu + eps * std
|
| 33 |
+
decoded_image = model.decode(z)
|
| 34 |
+
|
| 35 |
+
decoded_image = decoded_image.squeeze().permute(1, 2, 0).cpu().numpy().astype(np.float32) * 0.5 + 0.5
|
| 36 |
+
decoded_image = np.clip(decoded_image, 0, 1)
|
| 37 |
+
|
| 38 |
+
decoded_image = Image.fromarray((decoded_image * 255).astype(np.uint8))
|
| 39 |
+
decoded_image = transform2(decoded_image)
|
| 40 |
+
return np.array(decoded_image)
|
| 41 |
+
|
| 42 |
+
examples = [
|
| 43 |
+
["example_images/image1.jpg", 0.1],
|
| 44 |
+
["example_images/image2.png", 0.5],
|
| 45 |
+
["example_images/image3.jpg", 1.0],
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
with gr.Blocks() as vae:
|
| 49 |
+
noise_slider = gr.Slider(0, 10, value=0.01, step=0.01, label="Noise Level")
|
| 50 |
+
with gr.Row():
|
| 51 |
+
with gr.Column():
|
| 52 |
+
input_image = gr.Image(label="Upload an image", type="numpy")
|
| 53 |
+
with gr.Column():
|
| 54 |
+
output_image = gr.Image(label="Reconstructed Image")
|
| 55 |
+
|
| 56 |
+
input_image.change(fn=infer_image, inputs=[input_image, noise_slider], outputs=output_image)
|
| 57 |
+
noise_slider.change(fn=infer_image, inputs=[input_image, noise_slider], outputs=output_image)
|
| 58 |
+
|
| 59 |
+
gr.Examples(examples=examples, inputs=[input_image, noise_slider])
|