Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- src/config.py +33 -0
- src/data_processing.py +68 -0
- src/model.py +154 -0
src/config.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
class ClipSegMultiClassConfig(PretrainedConfig):
|
| 7 |
+
model_type = "clipseg-multiclass"
|
| 8 |
+
is_composition = False
|
| 9 |
+
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
class_labels=None,
|
| 13 |
+
label2color=None,
|
| 14 |
+
model="CIDAS/clipseg-rd64-refined",
|
| 15 |
+
image_size=352,
|
| 16 |
+
**kwargs
|
| 17 |
+
):
|
| 18 |
+
super().__init__(**kwargs)
|
| 19 |
+
|
| 20 |
+
self.class_labels = class_labels or []
|
| 21 |
+
self.num_classes = len(self.class_labels)
|
| 22 |
+
|
| 23 |
+
self.label2color = label2color or {
|
| 24 |
+
i: [
|
| 25 |
+
int(255 * (i / max(1, self.num_classes - 1))),
|
| 26 |
+
0,
|
| 27 |
+
255 - int(255 * (i / max(1, self.num_classes - 1)))
|
| 28 |
+
]
|
| 29 |
+
for i in range(self.num_classes)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
self.model = model
|
| 33 |
+
self.image_size = image_size
|
src/data_processing.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from torch.utils.data import Dataset
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
class SingleClassSegmentationDataset(Dataset):
|
| 8 |
+
def __init__(self, dataset, class_labels, image_size=352, transform=None):
|
| 9 |
+
|
| 10 |
+
self.items = dataset
|
| 11 |
+
self.class_labels = class_labels
|
| 12 |
+
self.image_size = image_size
|
| 13 |
+
self.transform = transform
|
| 14 |
+
|
| 15 |
+
def __len__(self):
|
| 16 |
+
return len(self.items)
|
| 17 |
+
|
| 18 |
+
def __getitem__(self, idx):
|
| 19 |
+
item = self.items[idx]
|
| 20 |
+
|
| 21 |
+
image = Image.open(item["img_path"]).convert("RGB")
|
| 22 |
+
mask = Image.open(item["mask_path"]).convert("L")
|
| 23 |
+
class_name = item["label"]
|
| 24 |
+
|
| 25 |
+
class_index = self.class_labels.index(class_name)
|
| 26 |
+
background_index = 0
|
| 27 |
+
|
| 28 |
+
mask_np = np.array(mask) > 0
|
| 29 |
+
final_mask = np.full(mask_np.shape, background_index, dtype=np.uint8)
|
| 30 |
+
final_mask[mask_np] = class_index
|
| 31 |
+
|
| 32 |
+
image = image.resize((self.image_size, self.image_size), Image.BILINEAR)
|
| 33 |
+
final_mask = Image.fromarray(final_mask).resize((self.image_size, self.image_size), Image.NEAREST)
|
| 34 |
+
|
| 35 |
+
if self.transform:
|
| 36 |
+
image, final_mask = self.transform(image, final_mask)
|
| 37 |
+
|
| 38 |
+
return {
|
| 39 |
+
"image": image,
|
| 40 |
+
"labels": torch.from_numpy(np.array(final_mask)).long()
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class SegmentationCollator:
|
| 45 |
+
def __init__(self, processor, class_labels):
|
| 46 |
+
self.processor = processor
|
| 47 |
+
self.class_labels = class_labels
|
| 48 |
+
|
| 49 |
+
def __call__(self, batch):
|
| 50 |
+
images = [item["image"] for item in batch]
|
| 51 |
+
labels = [item["labels"] for item in batch]
|
| 52 |
+
|
| 53 |
+
prompts = self.class_labels * len(images)
|
| 54 |
+
expanded_images = [img for img in images for _ in self.class_labels]
|
| 55 |
+
|
| 56 |
+
inputs = self.processor(
|
| 57 |
+
images=expanded_images,
|
| 58 |
+
text=prompts,
|
| 59 |
+
return_tensors="pt",
|
| 60 |
+
padding=True,
|
| 61 |
+
truncation=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return {
|
| 65 |
+
"pixel_values": inputs["pixel_values"],
|
| 66 |
+
"input_ids": inputs["input_ids"],
|
| 67 |
+
"labels": torch.stack(labels)
|
| 68 |
+
}
|
src/model.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple, Union, List
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import PIL
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from transformers import (
|
| 9 |
+
PreTrainedModel,
|
| 10 |
+
CLIPSegProcessor,
|
| 11 |
+
CLIPSegForImageSegmentation,
|
| 12 |
+
)
|
| 13 |
+
from transformers.modeling_outputs import ModelOutput
|
| 14 |
+
|
| 15 |
+
from .config import ClipSegMultiClassConfig
|
| 16 |
+
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
|
| 17 |
+
import numpy as np
|
| 18 |
+
from torch.utils.data import DataLoader
|
| 19 |
+
from collections import defaultdict
|
| 20 |
+
|
| 21 |
+
def flatten_outputs(preds, targets, num_classes):
|
| 22 |
+
"""Flatten predictions and targets to 1D arrays, filter ignored labels."""
|
| 23 |
+
preds = preds.cpu().numpy().reshape(-1)
|
| 24 |
+
targets = targets.cpu().numpy().reshape(-1)
|
| 25 |
+
|
| 26 |
+
mask = (targets >= 0) & (targets < num_classes)
|
| 27 |
+
return preds[mask], targets[mask]
|
| 28 |
+
|
| 29 |
+
def compute_metrics(all_preds, all_targets, num_classes, average="macro"):
|
| 30 |
+
y_pred = np.concatenate(all_preds)
|
| 31 |
+
y_true = np.concatenate(all_targets)
|
| 32 |
+
|
| 33 |
+
metrics = {
|
| 34 |
+
"accuracy": accuracy_score(y_true, y_pred),
|
| 35 |
+
"precision": precision_score(y_true, y_pred, average=average, zero_division=0),
|
| 36 |
+
"recall": recall_score(y_true, y_pred, average=average, zero_division=0),
|
| 37 |
+
"f1": f1_score(y_true, y_pred, average=average, zero_division=0),
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
return metrics
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@dataclass
|
| 44 |
+
class ClipSegMultiClassOutput(ModelOutput):
|
| 45 |
+
loss: Optional[torch.FloatTensor] = None
|
| 46 |
+
logits: Optional[torch.FloatTensor] = None
|
| 47 |
+
predictions: Optional[torch.LongTensor] = None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class ClipSegMultiClassModel(PreTrainedModel):
|
| 51 |
+
config_class = ClipSegMultiClassConfig
|
| 52 |
+
base_model_prefix = "clipseg_multiclass"
|
| 53 |
+
|
| 54 |
+
def __init__(self, config: ClipSegMultiClassConfig):
|
| 55 |
+
super().__init__(config)
|
| 56 |
+
|
| 57 |
+
self.config = config
|
| 58 |
+
self.class_labels = config.class_labels
|
| 59 |
+
self.num_classes = config.num_classes
|
| 60 |
+
self.processor = CLIPSegProcessor.from_pretrained(config.model)
|
| 61 |
+
self.clipseg = CLIPSegForImageSegmentation.from_pretrained(config.model)
|
| 62 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 63 |
+
|
| 64 |
+
def forward(
|
| 65 |
+
self,
|
| 66 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 67 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 68 |
+
labels: Optional[torch.Tensor] = None,
|
| 69 |
+
**kwargs
|
| 70 |
+
) -> ClipSegMultiClassOutput:
|
| 71 |
+
|
| 72 |
+
if pixel_values is None or input_ids is None:
|
| 73 |
+
raise ValueError("Both `pixel_values` and `input_ids` must be provided.")
|
| 74 |
+
|
| 75 |
+
pixel_values = pixel_values.to(self.device)
|
| 76 |
+
input_ids = input_ids.to(self.device)
|
| 77 |
+
|
| 78 |
+
outputs = self.clipseg(pixel_values=pixel_values, input_ids=input_ids)
|
| 79 |
+
raw_logits = outputs.logits # shape: [B * C, H, W]
|
| 80 |
+
|
| 81 |
+
B = raw_logits.shape[0] // self.num_classes
|
| 82 |
+
C = self.num_classes
|
| 83 |
+
H, W = raw_logits.shape[-2:]
|
| 84 |
+
|
| 85 |
+
logits = raw_logits.view(B, C, H, W) # [B, C, H, W]
|
| 86 |
+
pred = torch.argmax(logits, dim=1) # [B, H, W]
|
| 87 |
+
|
| 88 |
+
loss = self.loss_fct(logits, labels.long()) if labels is not None else None
|
| 89 |
+
|
| 90 |
+
return ClipSegMultiClassOutput(
|
| 91 |
+
loss=loss,
|
| 92 |
+
logits=logits,
|
| 93 |
+
predictions=pred
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
@torch.no_grad()
|
| 97 |
+
def predict(self, images: Union[List, "PIL.Image.Image"]) -> torch.Tensor:
|
| 98 |
+
self.eval()
|
| 99 |
+
if isinstance(images, Image.Image):
|
| 100 |
+
images = [images]
|
| 101 |
+
|
| 102 |
+
inputs = self.processor(
|
| 103 |
+
images=[img for img in images for _ in self.class_labels],
|
| 104 |
+
text=self.class_labels * len(images),
|
| 105 |
+
return_tensors="pt",
|
| 106 |
+
padding=True,
|
| 107 |
+
truncation=True
|
| 108 |
+
).to(self.device)
|
| 109 |
+
|
| 110 |
+
output = self.forward(
|
| 111 |
+
pixel_values=inputs["pixel_values"],
|
| 112 |
+
input_ids=inputs["input_ids"]
|
| 113 |
+
)
|
| 114 |
+
return output.predictions
|
| 115 |
+
|
| 116 |
+
def evaluate(self, dataloader: torch.utils.data.DataLoader) -> dict:
|
| 117 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
| 118 |
+
import numpy as np
|
| 119 |
+
|
| 120 |
+
self.eval()
|
| 121 |
+
|
| 122 |
+
all_preds = []
|
| 123 |
+
all_targets = []
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
for batch in dataloader:
|
| 127 |
+
pixel_values = batch["pixel_values"].to(self.device) # [B * C, 3, H, W]
|
| 128 |
+
input_ids = batch["input_ids"].to(self.device) # [B * C, T]
|
| 129 |
+
labels = batch["labels"].to(self.device) # [B, H, W]
|
| 130 |
+
|
| 131 |
+
outputs = self.forward(pixel_values=pixel_values, input_ids=input_ids)
|
| 132 |
+
preds = outputs.predictions # [B, H, W]
|
| 133 |
+
|
| 134 |
+
for pred, label in zip(preds, labels):
|
| 135 |
+
pred = pred.cpu().flatten()
|
| 136 |
+
label = label.cpu().flatten()
|
| 137 |
+
|
| 138 |
+
mask = label != 0
|
| 139 |
+
pred = pred[mask]
|
| 140 |
+
label = label[mask]
|
| 141 |
+
|
| 142 |
+
all_preds.append(pred)
|
| 143 |
+
all_targets.append(label)
|
| 144 |
+
|
| 145 |
+
y_pred = torch.cat(all_preds).numpy()
|
| 146 |
+
y_true = torch.cat(all_targets).numpy()
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
"accuracy": accuracy_score(y_true, y_pred),
|
| 150 |
+
"precision": precision_score(y_true, y_pred, average="macro", zero_division=0),
|
| 151 |
+
"recall": recall_score(y_true, y_pred, average="macro", zero_division=0),
|
| 152 |
+
"f1": f1_score(y_true, y_pred, average="macro", zero_division=0),
|
| 153 |
+
}
|
| 154 |
+
|