Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image | |
| from transformers import pipeline | |
| # Cargamos un modelo ligero de clasificaci贸n | |
| classifier = pipeline( | |
| "image-classification", | |
| model="umm-maybe/ai-image-detector", | |
| ) | |
| def predict(image): | |
| # Convertir a formato PIL | |
| image = Image.fromarray(image) | |
| # Ejecutar predicci贸n | |
| outputs = classifier(image) | |
| # Ordenamos por confianza | |
| outputs = sorted(outputs, key=lambda x: x["score"], reverse=True) | |
| label = outputs[0]["label"] | |
| score = outputs[0]["score"] | |
| # Formato de respuesta | |
| if "ai" in label.lower(): | |
| result = f"馃 Imagen generada por IA\nConfianza: {score:.2%}" | |
| else: | |
| result = f"馃摲 Imagen real\nConfianza: {score:.2%}" | |
| return result | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="numpy"), | |
| outputs="text", | |
| title="Detector de Im谩genes IA", | |
| description="Sube una imagen y detecta si es real o generada por IA.", | |
| ) | |
| demo.launch() | |