Spaces:
Sleeping
Sleeping
Commit
·
4380ba4
1
Parent(s):
9c9b1b7
Add visuals in app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
# streamlit_app.py
|
| 3 |
-
|
| 4 |
import streamlit as st
|
| 5 |
import pandas as pd
|
| 6 |
import matplotlib.pyplot as plt
|
|
@@ -8,64 +5,74 @@ import seaborn as sns
|
|
| 8 |
import plotly.express as px
|
| 9 |
import plotly.graph_objects as go
|
| 10 |
|
| 11 |
-
# ---------------------------
|
| 12 |
-
# Function Definitions
|
| 13 |
-
# ---------------------------
|
| 14 |
-
|
| 15 |
-
def create_histogram(df):
|
| 16 |
-
"""Creates a histogram for Age Distribution."""
|
| 17 |
-
fig, ax = plt.subplots(figsize=(5, 3.5))
|
| 18 |
-
sns.histplot(df['anchor_age'], bins=30, kde=True, color='skyblue', ax=ax)
|
| 19 |
-
ax.set_xlabel("Age")
|
| 20 |
-
ax.set_ylabel("Number of Admissions")
|
| 21 |
-
ax.set_title("Age Distribution")
|
| 22 |
-
plt.tight_layout()
|
| 23 |
-
st.pyplot(fig)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
"""Creates a bar chart for Gender Distribution."""
|
| 27 |
-
fig, ax = plt.subplots(figsize=(5, 3.5))
|
| 28 |
-
sns.countplot(data=df, x='gender', palette='pastel', ax=ax)
|
| 29 |
-
ax.set_title("Gender Distribution")
|
| 30 |
-
ax.set_xlabel("Gender")
|
| 31 |
-
ax.set_ylabel("Number of Admissions")
|
| 32 |
-
plt.tight_layout()
|
| 33 |
-
st.pyplot(fig)
|
| 34 |
-
|
| 35 |
-
def create_stacked_bar_admission_race(df):
|
| 36 |
-
"""Creates a stacked bar chart for Admission Types by Race."""
|
| 37 |
-
admission_race = df.groupby(['race', 'admission_type']).size().unstack(fill_value=0)
|
| 38 |
-
admission_race_percent = admission_race.div(admission_race.sum(axis=1), axis=0) * 100
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
plt.tight_layout()
|
| 46 |
st.pyplot(plt.gcf())
|
| 47 |
-
|
| 48 |
-
def
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
"""Creates a correlation heatmap for numerical features."""
|
| 61 |
-
numerical_features = df[['anchor_age', 'los']]
|
| 62 |
-
corr_matrix = numerical_features.corr()
|
| 63 |
-
|
| 64 |
-
fig, ax = plt.subplots(figsize=(3.5, 3))
|
| 65 |
-
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", ax=ax)
|
| 66 |
-
ax.set_title("Correlation Heatmap")
|
| 67 |
-
plt.tight_layout()
|
| 68 |
-
st.pyplot(fig)
|
| 69 |
|
| 70 |
def create_time_series_heatmap(df):
|
| 71 |
"""Creates an admissions over time heatmap."""
|
|
@@ -81,16 +88,76 @@ def create_time_series_heatmap(df):
|
|
| 81 |
y='admission_year',
|
| 82 |
z='counts',
|
| 83 |
histfunc='sum',
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
color_continuous_scale='Blues'
|
| 87 |
)
|
| 88 |
-
|
| 89 |
fig.update_xaxes(categoryorder='array', categoryarray=month_order)
|
| 90 |
fig.update_layout(yaxis=dict(autorange='reversed'))
|
| 91 |
fig.update_traces(colorbar=dict(title='Admissions'))
|
| 92 |
st.plotly_chart(fig, use_container_width=True)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def create_mortality_by_race(df):
|
| 95 |
"""Creates a bar chart for Mortality Rate by Race."""
|
| 96 |
mortality_race = df.groupby('race')['hospital_expire_flag'].mean().reset_index()
|
|
@@ -98,7 +165,6 @@ def create_mortality_by_race(df):
|
|
| 98 |
|
| 99 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 100 |
sns.barplot(data=mortality_race, x='race', y='mortality_rate', palette='Set2', ax=ax)
|
| 101 |
-
ax.set_title("Mortality Rate by Race")
|
| 102 |
ax.set_xlabel("Race")
|
| 103 |
ax.set_ylabel("Mortality Rate (%)")
|
| 104 |
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
|
|
@@ -112,7 +178,6 @@ def create_mortality_by_gender(df):
|
|
| 112 |
|
| 113 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 114 |
sns.barplot(data=mortality_gender, x='gender', y='mortality_rate', palette='Set3', ax=ax)
|
| 115 |
-
ax.set_title("Mortality Rate by Gender")
|
| 116 |
ax.set_xlabel("Gender")
|
| 117 |
ax.set_ylabel("Mortality Rate (%)")
|
| 118 |
plt.tight_layout()
|
|
@@ -120,7 +185,6 @@ def create_mortality_by_gender(df):
|
|
| 120 |
|
| 121 |
def create_mortality_by_age_group(df):
|
| 122 |
"""Creates a bar chart for Mortality Rate by Age Group."""
|
| 123 |
-
# Define age bins and labels
|
| 124 |
bins = [0, 30, 50, 70, 90, 120]
|
| 125 |
labels = ['0-30', '31-50', '51-70', '71-90', '91-120']
|
| 126 |
df['age_group'] = pd.cut(df['anchor_age'], bins=bins, labels=labels, right=False)
|
|
@@ -130,7 +194,6 @@ def create_mortality_by_age_group(df):
|
|
| 130 |
|
| 131 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 132 |
sns.barplot(data=mortality_age, x='age_group', y='mortality_rate', palette='coolwarm', ax=ax)
|
| 133 |
-
ax.set_title("Mortality Rate by Age Group")
|
| 134 |
ax.set_xlabel("Age Group")
|
| 135 |
ax.set_ylabel("Mortality Rate (%)")
|
| 136 |
plt.tight_layout()
|
|
@@ -148,7 +211,6 @@ def create_violin_age_race_mortality(df):
|
|
| 148 |
palette='Set2',
|
| 149 |
ax=ax
|
| 150 |
)
|
| 151 |
-
ax.set_title("Age Distribution by Race and Mortality")
|
| 152 |
ax.set_xlabel("Race")
|
| 153 |
ax.set_ylabel("Age")
|
| 154 |
ax.legend(title='Mortality', loc='upper right')
|
|
@@ -162,42 +224,15 @@ def create_heatmap_race_gender_mortality(df):
|
|
| 162 |
columns='gender',
|
| 163 |
values='hospital_expire_flag',
|
| 164 |
aggfunc='mean'
|
| 165 |
-
) * 100
|
| 166 |
-
|
| 167 |
fig, ax = plt.subplots(figsize=(8, 6))
|
| 168 |
sns.heatmap(pivot_table, annot=True, fmt=".1f", cmap='YlOrRd', ax=ax)
|
| 169 |
-
ax.set_title("Mortality Rate by Race and Gender (%)")
|
| 170 |
ax.set_xlabel("Gender")
|
| 171 |
ax.set_ylabel("Race")
|
| 172 |
plt.tight_layout()
|
| 173 |
st.pyplot(fig)
|
| 174 |
|
| 175 |
-
def create_parallel_coordinates(df):
|
| 176 |
-
"""Creates a parallel coordinates plot for Demographics and Outcomes."""
|
| 177 |
-
# Select relevant numerical features
|
| 178 |
-
parallel_df = df[['anchor_age', 'los', 'hospital_expire_flag']].copy()
|
| 179 |
-
|
| 180 |
-
# Encode categorical variables numerically
|
| 181 |
-
parallel_df['race_code'] = df['race'].astype('category').cat.codes
|
| 182 |
-
parallel_df['gender_code'] = df['gender'].astype('category').cat.codes
|
| 183 |
-
|
| 184 |
-
# Create the parallel coordinates plot
|
| 185 |
-
fig = px.parallel_coordinates(
|
| 186 |
-
parallel_df,
|
| 187 |
-
color='hospital_expire_flag',
|
| 188 |
-
labels={
|
| 189 |
-
'anchor_age': 'Age',
|
| 190 |
-
'los': 'Length of Stay',
|
| 191 |
-
'hospital_expire_flag': 'Mortality',
|
| 192 |
-
'race_code': 'Race',
|
| 193 |
-
'gender_code': 'Gender'
|
| 194 |
-
},
|
| 195 |
-
color_continuous_scale=px.colors.diverging.Tealrose,
|
| 196 |
-
color_continuous_midpoint=0.5
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
fig.update_layout(title='Parallel Coordinates Plot of Demographics and Outcomes')
|
| 200 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 201 |
|
| 202 |
def create_treemap_race_mortality(df):
|
| 203 |
"""Creates a treemap for Race and Mortality."""
|
|
@@ -209,70 +244,12 @@ def create_treemap_race_mortality(df):
|
|
| 209 |
path=['race', 'Mortality'],
|
| 210 |
values='counts',
|
| 211 |
color='Mortality',
|
| 212 |
-
color_discrete_map={'Survived':'#66b3ff','Died':'#ff6666'}
|
| 213 |
-
title='Treemap of Race and Mortality'
|
| 214 |
)
|
| 215 |
fig.update_layout(margin = dict(t=30, l=0, r=0, b=0))
|
| 216 |
st.plotly_chart(fig, use_container_width=True)
|
| 217 |
|
| 218 |
-
def create_sankey_race_mortality(df):
|
| 219 |
-
"""Creates a Sankey diagram for Race to Mortality Outcomes."""
|
| 220 |
-
sankey_df = df.groupby(['race', 'hospital_expire_flag']).size().reset_index(name='counts')
|
| 221 |
-
|
| 222 |
-
# Map 'hospital_expire_flag' to 'Mortality' status
|
| 223 |
-
sankey_df['Mortality'] = sankey_df['hospital_expire_flag'].map({0: 'Survived', 1: 'Died'})
|
| 224 |
-
|
| 225 |
-
# Create source and target labels
|
| 226 |
-
source = sankey_df['race'].tolist()
|
| 227 |
-
target = sankey_df['Mortality'].tolist()
|
| 228 |
-
values = sankey_df['counts'].tolist()
|
| 229 |
-
|
| 230 |
-
# Create a list of unique labels ensuring no duplicates
|
| 231 |
-
unique_races = sankey_df['race'].unique().tolist()
|
| 232 |
-
unique_mortality = sankey_df['Mortality'].unique().tolist()
|
| 233 |
-
labels = unique_races + unique_mortality
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
# Create a mapping from label to index for efficient lookup
|
| 237 |
-
label_to_index = {label: idx for idx, label in enumerate(labels)}
|
| 238 |
-
|
| 239 |
-
# Map source and target labels to their corresponding indices
|
| 240 |
-
source_indices = [label_to_index[s] for s in source]
|
| 241 |
-
target_indices = [label_to_index[t] for t in target]
|
| 242 |
-
|
| 243 |
-
# Optionally, define colors for different node types
|
| 244 |
-
# For example, races could have one color and mortality outcomes another
|
| 245 |
-
race_color = "#FFA07A" # Light Salmon
|
| 246 |
-
mortality_color = "#20B2AA" # Light Sea Green
|
| 247 |
-
node_colors = [race_color] * len(unique_races) + [mortality_color] * len(unique_mortality)
|
| 248 |
-
|
| 249 |
-
# Create the Sankey diagram
|
| 250 |
-
fig = go.Figure(data=[go.Sankey(
|
| 251 |
-
node=dict(
|
| 252 |
-
pad=15,
|
| 253 |
-
thickness=20,
|
| 254 |
-
line=dict(color="black", width=0.5),
|
| 255 |
-
label=labels,
|
| 256 |
-
color=node_colors
|
| 257 |
-
),
|
| 258 |
-
link=dict(
|
| 259 |
-
source=source_indices,
|
| 260 |
-
target=target_indices,
|
| 261 |
-
value=values
|
| 262 |
-
)
|
| 263 |
-
)])
|
| 264 |
-
|
| 265 |
-
# Add title to the layout
|
| 266 |
-
fig.update_layout(
|
| 267 |
-
title_text="Sankey Diagram of Race and Mortality Outcomes",
|
| 268 |
-
font_size=10
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 272 |
-
|
| 273 |
-
# ---------------------------
|
| 274 |
# Streamlit Application
|
| 275 |
-
# ---------------------------
|
| 276 |
|
| 277 |
# Set Streamlit page configuration
|
| 278 |
st.set_page_config(
|
|
@@ -281,11 +258,10 @@ st.set_page_config(
|
|
| 281 |
initial_sidebar_state="expanded",
|
| 282 |
)
|
| 283 |
|
| 284 |
-
# Title and Description
|
| 285 |
st.title("MIMIC-IV ICU Patient Data Dashboard")
|
| 286 |
-
st.markdown(
|
| 287 |
-
Explore the general feature distribution and
|
| 288 |
-
|
| 289 |
|
| 290 |
# Sidebar Filters
|
| 291 |
st.sidebar.header("Filter Data")
|
|
@@ -293,10 +269,10 @@ st.sidebar.header("Filter Data")
|
|
| 293 |
@st.cache_data
|
| 294 |
def load_data():
|
| 295 |
|
| 296 |
-
admissions_df = pd.
|
| 297 |
-
patients_df = pd.
|
| 298 |
# diagnoses_icd_df = pd.read_csv('data/diagnoses_icd.csv')
|
| 299 |
-
pharmacy_df = pd.
|
| 300 |
# prescriptions_df = pd.read_csv('data/prescriptions.csv')
|
| 301 |
# d_hcpcs_df = pd.read_csv('data/d_hcpcs.csv')
|
| 302 |
# poe_detail_df = pd.read_csv('data/poe_detail.csv')
|
|
@@ -337,16 +313,14 @@ def load_data():
|
|
| 337 |
"NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER":"NATIVES"}
|
| 338 |
|
| 339 |
admissions_df['race'] = admissions_df['race'].map(race_map)
|
| 340 |
-
|
| 341 |
merged_df = pd.merge(admissions_df, patients_df, on='subject_id', how='left')
|
| 342 |
|
| 343 |
-
# Handle missing values by dropping rows with critical missing data
|
| 344 |
merged_df = merged_df.dropna(subset=['anchor_age', 'gender', 'race', 'hospital_expire_flag'])
|
| 345 |
|
| 346 |
-
# Convert datetime columns
|
| 347 |
merged_df['admittime'] = pd.to_datetime(merged_df['admittime'])
|
| 348 |
merged_df['dischtime'] = pd.to_datetime(merged_df['dischtime'])
|
| 349 |
-
merged_df['deathtime'] = pd.to_datetime(merged_df['deathtime'], errors='coerce')
|
| 350 |
|
| 351 |
# Create derived features
|
| 352 |
merged_df['los'] = (merged_df['dischtime'] - merged_df['admittime']).dt.days
|
|
@@ -419,6 +393,7 @@ filtered_df = add_sidebar_filters(merged_df)
|
|
| 419 |
# Display Summary Statistics for Q1
|
| 420 |
st.header("Summary Statistics")
|
| 421 |
|
|
|
|
| 422 |
col1, col2, col3, col4 = st.columns(4)
|
| 423 |
|
| 424 |
with col1:
|
|
@@ -446,54 +421,82 @@ st.markdown("---")
|
|
| 446 |
tabs = st.tabs(["General Overview", "Potential Biases"])
|
| 447 |
|
| 448 |
# Q1: General Overview
|
|
|
|
| 449 |
with tabs[0]:
|
| 450 |
st.subheader("General Feature Distribution and Outcome Metrics")
|
| 451 |
|
|
|
|
| 452 |
num_cols = 2
|
| 453 |
|
| 454 |
-
|
|
|
|
| 455 |
{
|
| 456 |
-
"title": "
|
| 457 |
-
"plot": lambda:
|
| 458 |
},
|
| 459 |
{
|
| 460 |
-
"title": "
|
| 461 |
-
"plot": lambda:
|
| 462 |
},
|
| 463 |
{
|
| 464 |
-
"title": "
|
| 465 |
-
"plot": lambda:
|
| 466 |
},
|
| 467 |
{
|
| 468 |
-
"title": "
|
| 469 |
-
"plot": lambda:
|
| 470 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
{
|
| 472 |
-
"title": "
|
| 473 |
-
"plot": lambda:
|
| 474 |
},
|
| 475 |
{
|
| 476 |
"title": "Admissions Over Time",
|
| 477 |
"plot": lambda: create_time_series_heatmap(filtered_df)
|
| 478 |
}
|
| 479 |
]
|
| 480 |
-
|
| 481 |
-
|
|
|
|
| 482 |
cols = st.columns(num_cols)
|
| 483 |
for j in range(num_cols):
|
| 484 |
-
if i + j < len(
|
| 485 |
with cols[j]:
|
| 486 |
-
st.subheader(
|
| 487 |
-
|
| 488 |
|
| 489 |
|
| 490 |
-
# Q2: Potential Biases
|
| 491 |
with tabs[1]:
|
| 492 |
st.subheader("Analyzing Potential Biases Across Demographics")
|
| 493 |
|
|
|
|
| 494 |
num_cols = 2
|
| 495 |
|
|
|
|
| 496 |
q2_plots = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
{
|
| 498 |
"title": "Mortality Rate by Race",
|
| 499 |
"plot": lambda: create_mortality_by_race(filtered_df)
|
|
@@ -517,13 +520,10 @@ with tabs[1]:
|
|
| 517 |
{
|
| 518 |
"title": "Treemap of Race and Mortality",
|
| 519 |
"plot": lambda: create_treemap_race_mortality(filtered_df)
|
| 520 |
-
},
|
| 521 |
-
{
|
| 522 |
-
"title": "Sankey Diagram: Race to Mortality Outcomes",
|
| 523 |
-
"plot": lambda: create_sankey_race_mortality(filtered_df)
|
| 524 |
}
|
| 525 |
]
|
| 526 |
|
|
|
|
| 527 |
for i in range(0, len(q2_plots), num_cols):
|
| 528 |
cols = st.columns(num_cols)
|
| 529 |
for j in range(num_cols):
|
|
@@ -536,6 +536,6 @@ with tabs[1]:
|
|
| 536 |
st.markdown("""
|
| 537 |
---
|
| 538 |
**Data Source:** MIMIC-IV Dataset
|
| 539 |
-
**Project:**
|
| 540 |
**Developed with:** Streamlit, Python
|
| 541 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
|
|
|
| 5 |
import plotly.express as px
|
| 6 |
import plotly.graph_objects as go
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Plot Function Definitions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def create_gender_pie_chart(df):
|
| 12 |
+
"""Creates a bar chart for Gender Distribution."""
|
| 13 |
+
gender_counts = df['gender'].value_counts().reset_index()
|
| 14 |
+
gender_counts.columns = ['Gender', 'Count']
|
| 15 |
+
fig_gender = px.pie(
|
| 16 |
+
gender_counts,
|
| 17 |
+
names='Gender',
|
| 18 |
+
values='Count',
|
| 19 |
+
hover_data=['Count'],
|
| 20 |
+
hole=0.3
|
| 21 |
+
)
|
| 22 |
+
st.plotly_chart(fig_gender, use_container_width=True)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def create_race_pie_chart(df):
|
| 26 |
+
race_counts = df['race'].value_counts().reset_index()
|
| 27 |
+
race_counts.columns = ['Race Type', 'Count']
|
| 28 |
+
fig_race = px.pie(
|
| 29 |
+
race_counts,
|
| 30 |
+
names='Race Type',
|
| 31 |
+
values='Count',
|
| 32 |
+
hover_data=['Count'],
|
| 33 |
+
hole=0.3
|
| 34 |
+
)
|
| 35 |
+
st.plotly_chart(fig_race, use_container_width=True)
|
| 36 |
+
|
| 37 |
+
def create_insurance_pie_chart(df):
|
| 38 |
+
insurance_counts = df['insurance'].value_counts().reset_index()
|
| 39 |
+
insurance_counts.columns = ['Insurance Type', 'Count']
|
| 40 |
+
fig_insurance = px.pie(
|
| 41 |
+
insurance_counts,
|
| 42 |
+
names='Insurance Type',
|
| 43 |
+
values='Count',
|
| 44 |
+
hover_data=['Count'],
|
| 45 |
+
hole=0.3
|
| 46 |
+
)
|
| 47 |
+
st.plotly_chart(fig_insurance, use_container_width=True)
|
| 48 |
+
|
| 49 |
+
def create_mortality_pie_chart(df):
|
| 50 |
+
#plt.figure(figsize=(6,3), facecolor='white')
|
| 51 |
+
total_admissions = df.shape[0]
|
| 52 |
+
labels = ['Survived', 'Died']
|
| 53 |
+
sizes = [total_admissions - df['hospital_expire_flag'].sum(),
|
| 54 |
+
df['hospital_expire_flag'].sum()]
|
| 55 |
+
colors = ['#66b3ff', '#ff6666']
|
| 56 |
+
explode = (0.1, 0)
|
| 57 |
+
|
| 58 |
+
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
|
| 59 |
+
autopct='%1.1f%%', startangle=140, textprops={'fontsize': 14})
|
| 60 |
+
plt.axis('equal')
|
| 61 |
plt.tight_layout()
|
| 62 |
st.pyplot(plt.gcf())
|
| 63 |
+
|
| 64 |
+
def create_admission_type_bar_chart(df):
|
| 65 |
+
admission_counts = df['admission_type'].value_counts().reset_index()
|
| 66 |
+
admission_counts.columns = ['Admission Type', 'Count']
|
| 67 |
+
fig_admission = px.bar(
|
| 68 |
+
admission_counts,
|
| 69 |
+
y='Admission Type',
|
| 70 |
+
x='Count',
|
| 71 |
+
color='Admission Type',
|
| 72 |
+
labels={'Count': 'Number of Admissions', 'Admission Type': 'Admission Type'},
|
| 73 |
+
hover_data=['Count']
|
| 74 |
+
)
|
| 75 |
+
st.plotly_chart(fig_admission, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
def create_time_series_heatmap(df):
|
| 78 |
"""Creates an admissions over time heatmap."""
|
|
|
|
| 88 |
y='admission_year',
|
| 89 |
z='counts',
|
| 90 |
histfunc='sum',
|
| 91 |
+
labels={'counts': 'Number of Admissions', 'admission_month': 'Admission Month', 'admission_year': 'Admission Year'},
|
| 92 |
+
color_continuous_scale='rdbu'
|
|
|
|
| 93 |
)
|
|
|
|
| 94 |
fig.update_xaxes(categoryorder='array', categoryarray=month_order)
|
| 95 |
fig.update_layout(yaxis=dict(autorange='reversed'))
|
| 96 |
fig.update_traces(colorbar=dict(title='Admissions'))
|
| 97 |
st.plotly_chart(fig, use_container_width=True)
|
| 98 |
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# def create_stacked_bar_admission_race(df):
|
| 105 |
+
# """Creates a stacked bar chart for Admission Types by Race."""
|
| 106 |
+
# admission_race = df.groupby(['race', 'admission_type']).size().unstack(fill_value=0)
|
| 107 |
+
# admission_race_percent = admission_race.div(admission_race.sum(axis=1), axis=0) * 100
|
| 108 |
+
|
| 109 |
+
# admission_race_percent.plot(kind='bar', stacked=True, figsize=(8, 6), colormap='tab20')
|
| 110 |
+
# plt.xlabel("Race")
|
| 111 |
+
# plt.ylabel("Percentage of Admission Types")
|
| 112 |
+
# plt.legend(title='Admission Type', bbox_to_anchor=(1.05, 1), loc='upper left')
|
| 113 |
+
# plt.tight_layout()
|
| 114 |
+
# st.pyplot(plt.gcf())
|
| 115 |
+
|
| 116 |
+
# def create_los_by_race(df):
|
| 117 |
+
# """Creates a box plot for Length of Stay by Race."""
|
| 118 |
+
# fig, ax = plt.subplots(figsize=(6, 4))
|
| 119 |
+
# sns.boxplot(data=df, x='race', y='los', palette='Pastel1', ax=ax)
|
| 120 |
+
# ax.set_xlabel("Race")
|
| 121 |
+
# ax.set_ylabel("Length of Stay (Days)")
|
| 122 |
+
# ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
|
| 123 |
+
# plt.tight_layout()
|
| 124 |
+
# st.pyplot(fig)
|
| 125 |
+
|
| 126 |
+
# def create_correlation_heatmap(df):
|
| 127 |
+
# """Creates a correlation heatmap for numerical features."""
|
| 128 |
+
# numerical_features = df[['anchor_age', 'los']]
|
| 129 |
+
# corr_matrix = numerical_features.corr()
|
| 130 |
+
|
| 131 |
+
# fig, ax = plt.subplots(figsize=(3.5, 3))
|
| 132 |
+
# sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", ax=ax)
|
| 133 |
+
# plt.tight_layout()
|
| 134 |
+
# st.pyplot(fig)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def create_age_distribution_by_gender(df):
|
| 138 |
+
plt.figure(figsize=(12, 8))
|
| 139 |
+
sns.histplot(data=df, x='anchor_age', bins=30,
|
| 140 |
+
kde=True, palette='bright', hue='gender')
|
| 141 |
+
plt.xlabel('Age', fontsize=16)
|
| 142 |
+
plt.ylabel('Number of Admissions', fontsize=16)
|
| 143 |
+
plt.xticks(fontsize=16)
|
| 144 |
+
plt.yticks(fontsize=16)
|
| 145 |
+
plt.tight_layout()
|
| 146 |
+
st.pyplot(plt.gcf())
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def create_age_distribution_by_admission_type(df):
|
| 150 |
+
plt.figure(figsize=(12, 8))
|
| 151 |
+
sns.boxenplot(data=df, x='admission_type',
|
| 152 |
+
y='anchor_age', palette='Set3')
|
| 153 |
+
plt.xlabel('Admission Type', fontsize=16)
|
| 154 |
+
plt.ylabel('Age', fontsize=16)
|
| 155 |
+
plt.xticks(fontsize=16, rotation=45)
|
| 156 |
+
plt.yticks(fontsize=16)
|
| 157 |
+
plt.tight_layout()
|
| 158 |
+
st.pyplot(plt.gcf())
|
| 159 |
+
|
| 160 |
+
|
| 161 |
def create_mortality_by_race(df):
|
| 162 |
"""Creates a bar chart for Mortality Rate by Race."""
|
| 163 |
mortality_race = df.groupby('race')['hospital_expire_flag'].mean().reset_index()
|
|
|
|
| 165 |
|
| 166 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 167 |
sns.barplot(data=mortality_race, x='race', y='mortality_rate', palette='Set2', ax=ax)
|
|
|
|
| 168 |
ax.set_xlabel("Race")
|
| 169 |
ax.set_ylabel("Mortality Rate (%)")
|
| 170 |
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
|
|
|
|
| 178 |
|
| 179 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 180 |
sns.barplot(data=mortality_gender, x='gender', y='mortality_rate', palette='Set3', ax=ax)
|
|
|
|
| 181 |
ax.set_xlabel("Gender")
|
| 182 |
ax.set_ylabel("Mortality Rate (%)")
|
| 183 |
plt.tight_layout()
|
|
|
|
| 185 |
|
| 186 |
def create_mortality_by_age_group(df):
|
| 187 |
"""Creates a bar chart for Mortality Rate by Age Group."""
|
|
|
|
| 188 |
bins = [0, 30, 50, 70, 90, 120]
|
| 189 |
labels = ['0-30', '31-50', '51-70', '71-90', '91-120']
|
| 190 |
df['age_group'] = pd.cut(df['anchor_age'], bins=bins, labels=labels, right=False)
|
|
|
|
| 194 |
|
| 195 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 196 |
sns.barplot(data=mortality_age, x='age_group', y='mortality_rate', palette='coolwarm', ax=ax)
|
|
|
|
| 197 |
ax.set_xlabel("Age Group")
|
| 198 |
ax.set_ylabel("Mortality Rate (%)")
|
| 199 |
plt.tight_layout()
|
|
|
|
| 211 |
palette='Set2',
|
| 212 |
ax=ax
|
| 213 |
)
|
|
|
|
| 214 |
ax.set_xlabel("Race")
|
| 215 |
ax.set_ylabel("Age")
|
| 216 |
ax.legend(title='Mortality', loc='upper right')
|
|
|
|
| 224 |
columns='gender',
|
| 225 |
values='hospital_expire_flag',
|
| 226 |
aggfunc='mean'
|
| 227 |
+
) * 100
|
| 228 |
+
|
| 229 |
fig, ax = plt.subplots(figsize=(8, 6))
|
| 230 |
sns.heatmap(pivot_table, annot=True, fmt=".1f", cmap='YlOrRd', ax=ax)
|
|
|
|
| 231 |
ax.set_xlabel("Gender")
|
| 232 |
ax.set_ylabel("Race")
|
| 233 |
plt.tight_layout()
|
| 234 |
st.pyplot(fig)
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
def create_treemap_race_mortality(df):
|
| 238 |
"""Creates a treemap for Race and Mortality."""
|
|
|
|
| 244 |
path=['race', 'Mortality'],
|
| 245 |
values='counts',
|
| 246 |
color='Mortality',
|
| 247 |
+
color_discrete_map={'Survived':'#66b3ff','Died':'#ff6666'}
|
|
|
|
| 248 |
)
|
| 249 |
fig.update_layout(margin = dict(t=30, l=0, r=0, b=0))
|
| 250 |
st.plotly_chart(fig, use_container_width=True)
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
# Streamlit Application
|
|
|
|
| 253 |
|
| 254 |
# Set Streamlit page configuration
|
| 255 |
st.set_page_config(
|
|
|
|
| 258 |
initial_sidebar_state="expanded",
|
| 259 |
)
|
| 260 |
|
|
|
|
| 261 |
st.title("MIMIC-IV ICU Patient Data Dashboard")
|
| 262 |
+
st.markdown('''
|
| 263 |
+
Explore the general feature distribution and demographics related bias in ICU patients from the MIMIC-IV dataset. Utilize the sidebar filters to customize the data view'''
|
| 264 |
+
)
|
| 265 |
|
| 266 |
# Sidebar Filters
|
| 267 |
st.sidebar.header("Filter Data")
|
|
|
|
| 269 |
@st.cache_data
|
| 270 |
def load_data():
|
| 271 |
|
| 272 |
+
admissions_df = pd.read_csv('data/admissions.csv')
|
| 273 |
+
patients_df = pd.read_csv('data/patients.csv')
|
| 274 |
# diagnoses_icd_df = pd.read_csv('data/diagnoses_icd.csv')
|
| 275 |
+
# pharmacy_df = pd.read_csv('data/pharmacy.csv')
|
| 276 |
# prescriptions_df = pd.read_csv('data/prescriptions.csv')
|
| 277 |
# d_hcpcs_df = pd.read_csv('data/d_hcpcs.csv')
|
| 278 |
# poe_detail_df = pd.read_csv('data/poe_detail.csv')
|
|
|
|
| 313 |
"NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER":"NATIVES"}
|
| 314 |
|
| 315 |
admissions_df['race'] = admissions_df['race'].map(race_map)
|
| 316 |
+
|
| 317 |
merged_df = pd.merge(admissions_df, patients_df, on='subject_id', how='left')
|
| 318 |
|
|
|
|
| 319 |
merged_df = merged_df.dropna(subset=['anchor_age', 'gender', 'race', 'hospital_expire_flag'])
|
| 320 |
|
|
|
|
| 321 |
merged_df['admittime'] = pd.to_datetime(merged_df['admittime'])
|
| 322 |
merged_df['dischtime'] = pd.to_datetime(merged_df['dischtime'])
|
| 323 |
+
merged_df['deathtime'] = pd.to_datetime(merged_df['deathtime'], errors='coerce')
|
| 324 |
|
| 325 |
# Create derived features
|
| 326 |
merged_df['los'] = (merged_df['dischtime'] - merged_df['admittime']).dt.days
|
|
|
|
| 393 |
# Display Summary Statistics for Q1
|
| 394 |
st.header("Summary Statistics")
|
| 395 |
|
| 396 |
+
# Create four columns for metrics
|
| 397 |
col1, col2, col3, col4 = st.columns(4)
|
| 398 |
|
| 399 |
with col1:
|
|
|
|
| 421 |
tabs = st.tabs(["General Overview", "Potential Biases"])
|
| 422 |
|
| 423 |
# Q1: General Overview
|
| 424 |
+
|
| 425 |
with tabs[0]:
|
| 426 |
st.subheader("General Feature Distribution and Outcome Metrics")
|
| 427 |
|
| 428 |
+
# Define the number of columns per row
|
| 429 |
num_cols = 2
|
| 430 |
|
| 431 |
+
# Define all Q1 plots in a list with titles and plot-generating functions
|
| 432 |
+
q1_plots_2_col = [
|
| 433 |
{
|
| 434 |
+
"title": "Gender Distribution",
|
| 435 |
+
"plot": lambda: create_gender_pie_chart(filtered_df)
|
| 436 |
},
|
| 437 |
{
|
| 438 |
+
"title": "Race Distribution",
|
| 439 |
+
"plot": lambda: create_race_pie_chart(filtered_df)
|
| 440 |
},
|
| 441 |
{
|
| 442 |
+
"title": "Insurance Type Distribution",
|
| 443 |
+
"plot": lambda: create_insurance_pie_chart(filtered_df)
|
| 444 |
},
|
| 445 |
{
|
| 446 |
+
"title": "Mortality Rate of ICU Patients",
|
| 447 |
+
"plot": lambda: create_mortality_pie_chart(filtered_df)
|
| 448 |
+
}
|
| 449 |
+
]
|
| 450 |
+
# Arrange Q1 plots in a grid layout
|
| 451 |
+
for i in range(0, len(q1_plots_2_col), num_cols):
|
| 452 |
+
cols = st.columns(num_cols)
|
| 453 |
+
for j in range(num_cols):
|
| 454 |
+
if i + j < len(q1_plots_2_col):
|
| 455 |
+
with cols[j]:
|
| 456 |
+
st.subheader(q1_plots_2_col[i + j]["title"])
|
| 457 |
+
q1_plots_2_col[i + j]["plot"]()
|
| 458 |
+
|
| 459 |
+
num_cols = 1
|
| 460 |
+
|
| 461 |
+
q1_plots_1_col = [
|
| 462 |
{
|
| 463 |
+
"title": "Admission Type Count",
|
| 464 |
+
"plot": lambda: create_admission_type_bar_chart(filtered_df)
|
| 465 |
},
|
| 466 |
{
|
| 467 |
"title": "Admissions Over Time",
|
| 468 |
"plot": lambda: create_time_series_heatmap(filtered_df)
|
| 469 |
}
|
| 470 |
]
|
| 471 |
+
|
| 472 |
+
# Arrange Q1 plots in a grid layout
|
| 473 |
+
for i in range(0, len(q1_plots_1_col), num_cols):
|
| 474 |
cols = st.columns(num_cols)
|
| 475 |
for j in range(num_cols):
|
| 476 |
+
if i + j < len(q1_plots_1_col):
|
| 477 |
with cols[j]:
|
| 478 |
+
st.subheader(q1_plots_1_col[i + j]["title"])
|
| 479 |
+
q1_plots_1_col[i + j]["plot"]()
|
| 480 |
|
| 481 |
|
| 482 |
+
# Q2: Potential Biases
|
| 483 |
with tabs[1]:
|
| 484 |
st.subheader("Analyzing Potential Biases Across Demographics")
|
| 485 |
|
| 486 |
+
# Define the number of columns per row
|
| 487 |
num_cols = 2
|
| 488 |
|
| 489 |
+
# Define all Q2 plots in a list with titles and plot-generating functions
|
| 490 |
q2_plots = [
|
| 491 |
+
|
| 492 |
+
{
|
| 493 |
+
"title": "Age Distribution of ICU Patients",
|
| 494 |
+
"plot": lambda: create_age_distribution_by_gender(filtered_df)
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"title": "Boxen Plot of Age Distribution by Admission Type",
|
| 498 |
+
"plot": lambda: create_age_distribution_by_admission_type(filtered_df)
|
| 499 |
+
},
|
| 500 |
{
|
| 501 |
"title": "Mortality Rate by Race",
|
| 502 |
"plot": lambda: create_mortality_by_race(filtered_df)
|
|
|
|
| 520 |
{
|
| 521 |
"title": "Treemap of Race and Mortality",
|
| 522 |
"plot": lambda: create_treemap_race_mortality(filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
}
|
| 524 |
]
|
| 525 |
|
| 526 |
+
# Arrange Q2 plots in a grid layout
|
| 527 |
for i in range(0, len(q2_plots), num_cols):
|
| 528 |
cols = st.columns(num_cols)
|
| 529 |
for j in range(num_cols):
|
|
|
|
| 536 |
st.markdown("""
|
| 537 |
---
|
| 538 |
**Data Source:** MIMIC-IV Dataset
|
| 539 |
+
**Project:** Fairness in ICU Patient Data
|
| 540 |
**Developed with:** Streamlit, Python
|
| 541 |
""")
|