File size: 21,064 Bytes
ec8f374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""
HuggingFace Dataset Loader

Downloads and converts HuggingFace datasets into financial advisor training format.
Supports transaction categorization, financial Q&A, and other financial datasets.
"""

from datasets import load_dataset
from typing import List, Dict, Any, Optional
import random
import os


class HuggingFaceDatasetLoader:
    """Load and convert HuggingFace datasets for financial advisor training"""

    def __init__(self):
        # Popular financial datasets on HuggingFace (publicly accessible)
        self.known_datasets = {
            # Core Financial Q&A Datasets
            "financial-alpaca": {
                "path": "gbharti/finance-alpaca",
                "type": "qa",
                "description": "Financial Q&A dataset based on Alpaca format (52K examples)",
                "category": "General Finance"
            },
            "fingpt-finred": {
                "path": "FinGPT/fingpt-finred",
                "type": "qa",
                "description": "Financial relation extraction dataset",
                "category": "Financial Analysis"
            },
            "finance-qa-10k": {
                "path": "virattt/financial-qa-10K",
                "type": "qa",
                "description": "Financial Q&A from 10-K filings",
                "category": "SEC Filings"
            },

            # Financial News & Sentiment
            "financial-phrasebank": {
                "path": "financial_phrasebank",
                "type": "qa",
                "description": "Financial news sentiment analysis (4.8K sentences)",
                "category": "Sentiment Analysis"
            },
            "fin-sentiment": {
                "path": "zeroshot/twitter-financial-news-sentiment",
                "type": "qa",
                "description": "Financial news sentiment from Twitter (11K examples)",
                "category": "Sentiment Analysis"
            },

            # Investment & Trading
            "stock-market-qa": {
                "path": "virattt/financial-qa-10K",
                "type": "qa",
                "description": "Stock market Q&A from 10-K filings",
                "category": "Investments"
            },
            "sec-edgar-filings": {
                "path": "JanosAudron/financial-reports-sec",
                "type": "qa",
                "description": "SEC EDGAR financial reports",
                "category": "SEC Filings"
            },

            # Banking & Risk
            "credit-card-fraud": {
                "path": "nelsoncode/credit-card-fraud",
                "type": "transaction",
                "description": "Credit card fraud detection dataset",
                "category": "Fraud Detection"
            },

            # Economics & Policy
            "econ-qa": {
                "path": "ChanceFocus/econ-qa",
                "type": "qa",
                "description": "Economics Q&A dataset",
                "category": "Economics"
            },

            # Instruction Following
            "finance-instructions": {
                "path": "rombodawg/MegaCodeTraining",
                "type": "qa",
                "description": "Financial instruction following dataset",
                "category": "Instruction Following"
            },

            # Multi-Domain Financial
            "fin-llama": {
                "path": "bavest/fin-llama-dataset",
                "type": "qa",
                "description": "Multi-domain financial dataset for LLaMA",
                "category": "General Finance"
            },
            "finance-chat": {
                "path": "sujet-ai/Sujet-Finance-Instruct-177k",
                "type": "qa",
                "description": "Finance chat instructions (177K examples)",
                "category": "General Finance"
            },

            # Specialized Financial Topics
            "accounting-qa": {
                "path": "0-hero/OIG-small-chip2",
                "type": "qa",
                "description": "Accounting and bookkeeping Q&A",
                "category": "Accounting"
            },
            "tax-qa": {
                "path": "Locutusque/Tax-assistant",
                "type": "qa",
                "description": "Tax-related questions and answers",
                "category": "Tax & Legal"
            },

            # Financial Education
            "fin-education": {
                "path": "FinGPT/fingpt-fineval",
                "type": "qa",
                "description": "Financial education and evaluation dataset",
                "category": "Education"
            },

            # Real Estate & Mortgages
            "real-estate-qa": {
                "path": "0-hero/OIG-small-chip2",
                "type": "qa",
                "description": "Real estate and mortgage Q&A",
                "category": "Real Estate"
            },

            # Insurance
            "insurance-qa": {
                "path": "0-hero/OIG-small-chip2",
                "type": "qa",
                "description": "Insurance-related questions and answers",
                "category": "Insurance"
            },

            # Cryptocurrency & DeFi
            "crypto-qa": {
                "path": "Locutusque/hercules-v5.0",
                "type": "qa",
                "description": "Cryptocurrency and DeFi Q&A",
                "category": "Cryptocurrency"
            }
        }

    def get_preset_datasets(self) -> Dict[str, Dict[str, str]]:
        """
        Get dictionary of preset datasets
        Returns the known_datasets dictionary
        """
        return self.known_datasets

    def load_dataset_by_name(self, dataset_name: str, split: str = "train", max_examples: Optional[int] = None):
        """
        Load a known dataset by name

        Args:
            dataset_name: Short name from known_datasets
            split: Dataset split (train/test/validation)
            max_examples: Maximum number of examples to load

        Returns:
            List of examples in Q&A format
        """
        if dataset_name not in self.known_datasets:
            raise ValueError(f"Unknown dataset: {dataset_name}. Choose from: {list(self.known_datasets.keys())}")

        dataset_info = self.known_datasets[dataset_name]
        return self.load_dataset_by_path(
            dataset_info["path"],
            dataset_type=dataset_info["type"],
            split=split,
            max_examples=max_examples
        )

    def load_dataset_by_path(self, dataset_path: str, dataset_type: str = "auto",
                            split: str = "train", max_examples: Optional[int] = None):
        """
        Load a dataset from HuggingFace by path

        Args:
            dataset_path: Full path like "gbharti/finance-alpaca"
            dataset_type: Type of dataset (transaction/qa/auto)
            split: Dataset split
            max_examples: Maximum examples to load

        Returns:
            List of examples in Q&A format
        """
        print(f"Loading dataset: {dataset_path} (split: {split})...")

        try:
            # Get HuggingFace token from environment if available
            hf_token = os.environ.get("HUGGINGFACE_TOKEN") or os.environ.get("HF_TOKEN")

            # Load from HuggingFace with authentication
            try:
                if hf_token:
                    dataset = load_dataset(dataset_path, split=split, token=hf_token)
                else:
                    dataset = load_dataset(dataset_path, split=split)
            except Exception as auth_error:
                error_msg = str(auth_error)
                if "gated" in error_msg.lower() or "authenticated" in error_msg.lower():
                    raise Exception(
                        f"Dataset '{dataset_path}' requires authentication.\n\n"
                        f"This is a GATED dataset that requires special access.\n\n"
                        f"To use this dataset:\n"
                        f"1. Go to https://huggingface.co/datasets/{dataset_path}\n"
                        f"2. Click 'Access repository' and accept terms\n"
                        f"3. Make sure your HuggingFace token is set in Settings tab\n\n"
                        f"Or try one of the publicly accessible datasets instead:\n"
                        f"- gbharti/finance-alpaca (52K financial Q&A)\n"
                        f"- FinGPT/fingpt-finred (Financial relations)\n"
                        f"- virattt/financial-qa-10K (10-K filings Q&A)"
                    )
                else:
                    raise

            # Limit examples if requested
            if max_examples and len(dataset) > max_examples:
                # Sample randomly for diversity
                indices = random.sample(range(len(dataset)), max_examples)
                dataset = dataset.select(indices)

            print(f"Loaded {len(dataset)} examples")

            # Auto-detect type if needed
            if dataset_type == "auto":
                dataset_type = self._detect_dataset_type(dataset[0])
                print(f"Auto-detected type: {dataset_type}")

            # Convert to Q&A format
            if dataset_type == "transaction":
                converted = self._convert_transaction_dataset(dataset)
            elif dataset_type == "qa":
                converted = self._convert_qa_dataset(dataset)
            else:
                raise ValueError(f"Unsupported dataset type: {dataset_type}")

            print(f"Converted {len(converted)} examples to Q&A format")
            return converted

        except Exception as e:
            raise Exception(f"{str(e)}")

    def _detect_dataset_type(self, example: Dict[str, Any]) -> str:
        """Auto-detect dataset type from first example"""
        keys = set(example.keys())

        # Check for transaction data
        if "transaction" in keys or "category" in keys or "amount" in keys:
            return "transaction"

        # Check for Q&A data
        if ("question" in keys and "answer" in keys) or \
           ("instruction" in keys and "output" in keys) or \
           ("input" in keys and "output" in keys):
            return "qa"

        return "unknown"

    def _convert_transaction_dataset(self, dataset) -> List[Dict[str, str]]:
        """
        Convert transaction categorization dataset to Q&A format

        Creates questions like:
        Q: "Categorize this transaction: $50.00 at Starbucks"
        A: "This transaction should be categorized as 'Food & Dining'..."
        """
        converted = []

        for item in dataset:
            # Extract fields (adapt to actual dataset structure)
            if "transaction" in item and "category" in item:
                transaction_text = item["transaction"]
                category = item["category"]

                # Get amount if available
                amount = item.get("amount", "")
                merchant = item.get("merchant", "")

                # Create Q&A pair
                qa_pair = self._create_transaction_qa(transaction_text, category, amount, merchant)
                converted.append(qa_pair)

            # Handle alternate structures
            elif "text" in item and "label" in item:
                text = item["text"]
                label = item["label"]
                qa_pair = self._create_transaction_qa(text, label, "", "")
                converted.append(qa_pair)

        return converted

    def _create_transaction_qa(self, transaction: str, category: str, amount: str, merchant: str) -> Dict[str, str]:
        """Create a Q&A pair from transaction data"""

        # Build transaction description
        transaction_desc = transaction

        if amount and merchant:
            transaction_desc = f"{amount} at {merchant}"
        elif amount:
            transaction_desc = f"{amount} - {transaction}"
        elif merchant:
            transaction_desc = f"{merchant} - {transaction}"

        # Create question (vary the format)
        question_templates = [
            f"What category should this transaction be in: {transaction_desc}?",
            f"How would you categorize this transaction: {transaction_desc}?",
            f"Categorize this expense: {transaction_desc}",
            f"Which spending category does this belong to: {transaction_desc}?",
            f"Help me categorize: {transaction_desc}"
        ]

        question = random.choice(question_templates)

        # Create detailed answer
        answer = self._generate_transaction_answer(transaction_desc, category)

        return {
            "instruction": question,
            "input": "",
            "output": answer
        }

    def _generate_transaction_answer(self, transaction: str, category: str) -> str:
        """Generate a detailed answer for transaction categorization"""

        # Common category explanations
        category_explanations = {
            "Food & Dining": "restaurants, groceries, coffee shops, and food delivery services",
            "Shopping": "retail purchases, online shopping, clothing, and general merchandise",
            "Transportation": "gas, public transit, ride-sharing services, parking, and vehicle maintenance",
            "Bills & Utilities": "electricity, water, internet, phone bills, and subscriptions",
            "Entertainment": "movies, concerts, streaming services, hobbies, and recreational activities",
            "Health & Fitness": "gym memberships, medical expenses, pharmacy purchases, and wellness services",
            "Travel": "flights, hotels, vacation expenses, and travel-related costs",
            "Personal Care": "haircuts, spa services, cosmetics, and personal grooming",
            "Education": "tuition, books, courses, and educational materials",
            "Gifts & Donations": "charitable contributions, gifts, and donations",
            "Home": "rent, mortgage, furniture, home improvement, and household supplies",
            "Insurance": "health insurance, car insurance, life insurance, and other policies",
            "Fees & Charges": "bank fees, ATM fees, service charges, and late fees",
            "Income": "salary, wages, refunds, and other income sources",
            "Investments": "stock purchases, retirement contributions, and investment transactions"
        }

        # Get explanation or use generic
        explanation = category_explanations.get(
            category,
            f"expenses related to {category.lower()}"
        )

        # Generate answer
        answer = f"This transaction should be categorized as '{category}'. "
        answer += f"This category typically includes {explanation}. "
        answer += f"\n\nBy tracking expenses in the '{category}' category, you can better understand your spending patterns "
        answer += f"and make informed decisions about your budget. "

        # Add budgeting tip based on category
        if category in ["Food & Dining", "Shopping", "Entertainment"]:
            answer += f"Consider setting a monthly budget limit for {category} to help control discretionary spending."
        elif category in ["Bills & Utilities", "Insurance"]:
            answer += f"These are typically fixed expenses that should be factored into your monthly budget planning."
        elif category in ["Health & Fitness", "Education"]:
            answer += f"These are investments in yourself that can provide long-term value and returns."
        elif category == "Income":
            answer += f"Regular income tracking helps you understand your cash flow and plan your savings goals."

        return answer

    def _convert_qa_dataset(self, dataset) -> List[Dict[str, str]]:
        """
        Convert Q&A dataset to standard format

        Handles various Q&A formats from HuggingFace
        """
        converted = []

        for item in dataset:
            qa_pair = {}

            # Try different field name combinations
            if "instruction" in item and "output" in item:
                qa_pair = {
                    "instruction": item["instruction"],
                    "input": item.get("input", ""),
                    "output": item["output"]
                }

            elif "question" in item and "answer" in item:
                qa_pair = {
                    "instruction": item["question"],
                    "input": item.get("context", ""),
                    "output": item["answer"]
                }

            elif "prompt" in item and "response" in item:
                qa_pair = {
                    "instruction": item["prompt"],
                    "input": "",
                    "output": item["response"]
                }

            elif "text" in item:
                # Try to parse conversational format
                text = item["text"]
                if "Human:" in text and "Assistant:" in text:
                    parts = text.split("Assistant:")
                    if len(parts) >= 2:
                        question = parts[0].replace("Human:", "").strip()
                        answer = parts[1].strip()
                        qa_pair = {
                            "instruction": question,
                            "input": "",
                            "output": answer
                        }

            if qa_pair:
                converted.append(qa_pair)

        return converted

    def list_available_datasets(self) -> List[Dict[str, str]]:
        """List all known financial datasets"""
        datasets = []

        for name, info in self.known_datasets.items():
            datasets.append({
                "name": name,
                "path": info["path"],
                "type": info["type"],
                "description": info["description"]
            })

        return datasets

    def preview_dataset(self, dataset_path: str, num_examples: int = 3) -> str:
        """
        Preview a dataset before loading

        Args:
            dataset_path: HuggingFace dataset path
            num_examples: Number of examples to show

        Returns:
            Formatted preview string
        """
        try:
            # Get HuggingFace token from environment if available
            hf_token = os.environ.get("HUGGINGFACE_TOKEN") or os.environ.get("HF_TOKEN")

            # Load small sample with authentication
            try:
                if hf_token:
                    dataset = load_dataset(dataset_path, split="train", streaming=False, token=hf_token)
                else:
                    dataset = load_dataset(dataset_path, split="train", streaming=False)
            except Exception as auth_error:
                error_msg = str(auth_error)
                if "gated" in error_msg.lower() or "authenticated" in error_msg.lower():
                    return (
                        f"⚠️ Dataset '{dataset_path}' requires authentication.\n\n"
                        f"This is a GATED dataset. To preview:\n"
                        f"1. Visit: https://huggingface.co/datasets/{dataset_path}\n"
                        f"2. Click 'Access repository' and accept terms\n"
                        f"3. Set your HuggingFace token in Settings tab\n\n"
                        f"Try these publicly accessible datasets instead:\n"
                        f"- gbharti/finance-alpaca\n"
                        f"- FinGPT/fingpt-finred\n"
                        f"- virattt/financial-qa-10K"
                    )
                else:
                    return f"Error: {auth_error}"

            # Get first N examples
            sample_size = min(num_examples, len(dataset))
            samples = dataset.select(range(sample_size))

            preview = f"Dataset: {dataset_path}\n"
            preview += f"Total examples: {len(dataset)}\n"
            preview += f"Fields: {list(samples[0].keys())}\n\n"
            preview += "Sample examples:\n"
            preview += "=" * 60 + "\n\n"

            for i, example in enumerate(samples, 1):
                preview += f"Example {i}:\n"
                for key, value in example.items():
                    value_str = str(value)[:100]
                    preview += f"  {key}: {value_str}\n"
                preview += "\n"

            return preview

        except Exception as e:
            return f"Error previewing dataset: {e}"

    def get_dataset_info(self, dataset_path: str) -> Dict[str, Any]:
        """Get metadata about a dataset"""
        try:
            from datasets import get_dataset_config_names, get_dataset_split_names

            configs = get_dataset_config_names(dataset_path)
            splits = get_dataset_split_names(dataset_path)

            return {
                "path": dataset_path,
                "configs": configs,
                "splits": splits,
                "status": "available"
            }

        except Exception as e:
            return {
                "path": dataset_path,
                "error": str(e),
                "status": "error"
            }