Spaces:
Runtime error
Runtime error
File size: 14,725 Bytes
c27bcc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
"""
LaunchLLM - Minimal Demo for Investor Presentations
Compatible with Gradio 4.0.0 on HuggingFace Spaces
"""
import gradio as gr
import json
from pathlib import Path
# Load model registry info
def get_available_models():
"""Get list of supported models"""
return [
"Qwen 2.5 7B (Best for 8GB GPU)",
"Llama 3.1 8B (General Purpose)",
"Phi-3 Mini (Fastest Training)",
"Mistral 7B (Strong Reasoning)",
"Qwen 2.5 32B (Production Quality)"
]
def get_model_info(model_name):
"""Get information about a model"""
info = {
"Qwen 2.5 7B (Best for 8GB GPU)": "**VRAM Required:** 6-8GB\n**Training Time:** 30-60 min\n**Use Case:** Development & testing",
"Llama 3.1 8B (General Purpose)": "**VRAM Required:** 8-10GB\n**Training Time:** 45-90 min\n**Use Case:** Production ready",
"Phi-3 Mini (Fastest Training)": "**VRAM Required:** 4-6GB\n**Training Time:** 15-30 min\n**Use Case:** Quick iterations",
"Mistral 7B (Strong Reasoning)": "**VRAM Required:** 8-10GB\n**Training Time:** 45-90 min\n**Use Case:** Complex tasks",
"Qwen 2.5 32B (Production Quality)": "**VRAM Required:** 24GB+\n**Training Time:** 2-4 hours\n**Use Case:** Best quality"
}
return info.get(model_name, "Select a model to see details")
def generate_sample_data(topic, num_examples):
"""Generate sample training data (mock for demo)"""
examples = []
topics = topic.split(',') if topic else ["Financial Planning"]
for i in range(int(num_examples)):
topic_name = topics[i % len(topics)].strip()
examples.append({
"instruction": f"Example question about {topic_name} #{i+1}",
"input": "",
"output": f"Detailed answer about {topic_name} would go here..."
})
return json.dumps(examples, indent=2)
def train_model(model, data, epochs, learning_rate):
"""Simulate training (for demo purposes)"""
if not data or data == "{}":
return "β Please generate or add training data first!"
return f"""β
Training Started Successfully!
**Model:** {model}
**Epochs:** {epochs}
**Learning Rate:** {learning_rate}
π **Training Progress:**
ββββββββββββββββββββ 100%
**Note:** This is a demo environment. In production:
- Training runs on GPU (local or cloud)
- Takes 30-120 minutes depending on model size
- Automatically saves checkpoints
- Runs evaluation on completion
**Next Steps:**
1. Test your trained model in the Testing tab
2. Run certification benchmarks
3. Deploy to production
"""
def test_model(question):
"""Simulate model inference (for demo)"""
if not question:
return "Please enter a question to test the model."
return f"""**Your Question:** {question}
**AI Response:**
Based on your question about financial planning, here's a comprehensive answer:
In a production deployment, this would be a real response from your fine-tuned model. The model would have been trained on your specific domain data (financial advisory, medical, legal, etc.) and would provide accurate, relevant answers.
**Training Details:**
- Fine-tuned using LoRA (parameter-efficient)
- Trained on your custom dataset
- Optimized for your specific use case
**Production Features:**
- Real-time inference
- Cloud GPU deployment
- API endpoints
- Monitoring & logging
"""
# Create the demo interface
with gr.Blocks(
title="LaunchLLM - AI Training Platform",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# π LaunchLLM - AI Model Training Platform
**Train custom AI models for your domain - no coding required**
Perfect for: Financial Advisors β’ Medical Practices β’ Law Firms β’ Educational Institutions
""")
with gr.Tabs():
# Tab 1: Overview
with gr.Tab("π Overview"):
gr.Markdown("""
## What is LaunchLLM?
LaunchLLM is a **no-code platform** for training custom AI models using state-of-the-art techniques:
### β¨ Key Features
**1. No-Code Training**
- Select a pre-configured model
- Upload or generate training data
- Click "Train" - that's it!
**2. Efficient Training (LoRA/PEFT)**
- Train only 1-3% of model parameters
- 10x faster than full fine-tuning
- Works on consumer GPUs (8GB+)
**3. Professional Domains**
- **Financial Advisory:** CFP, CFA exam-ready models
- **Medical:** HIPAA-compliant medical assistants
- **Legal:** Contract law, compliance
- **Education:** Subject-specific tutors
**4. Production Ready**
- Cloud GPU integration (RunPod)
- Automatic evaluation & benchmarking
- Knowledge gap analysis
- API deployment
### π° Cost Efficiency
- **Training:** $2-10 per custom model
- **Inference:** Free (local) or $0.60/hr (cloud GPU)
- **ROI:** Automate 60%+ of routine questions
### π― Use Cases
| Industry | Use Case | ROI |
|----------|----------|-----|
| **Financial Services** | CFP-certified advisor chatbot | 40% cost reduction |
| **Medical Practices** | Patient intake & triage | 10x faster processing |
| **Law Firms** | Contract review & research | 60% time savings |
| **Education** | Personalized tutoring | 5x student engagement |
### π Competitive Advantages
vs. **OpenAI Fine-tuning:**
- β
Own your model (not dependent on API)
- β
10x cheaper per model
- β
No ongoing per-token costs
vs. **Building from scratch:**
- β
Ready in hours, not months
- β
No ML expertise required
- β
Pre-configured for best practices
---
**Ready to try it?** Click the tabs above to:
1. **Training Data** β Generate sample data
2. **Model Training** β Start training a model
3. **Testing** β Chat with your AI
""")
# Tab 2: Training Data
with gr.Tab("π Training Data"):
gr.Markdown("### Generate Sample Training Data")
gr.Markdown("In production, this uses GPT-4 or Claude to generate high-quality training examples.")
with gr.Row():
with gr.Column():
data_topic = gr.Textbox(
label="Topics (comma-separated)",
value="Retirement Planning, Tax Strategy, Estate Planning"
)
data_num = gr.Slider(
label="Number of Examples",
minimum=5,
maximum=100,
value=20,
step=5
)
generate_btn = gr.Button("β¨ Generate Sample Data", variant="primary")
with gr.Column():
data_output = gr.Code(
label="Generated Training Data (JSON)",
language="json",
lines=15
)
generate_btn.click(
fn=generate_sample_data,
inputs=[data_topic, data_num],
outputs=data_output
)
gr.Markdown("""
**Production Features:**
- AI-generated Q&A pairs using GPT-4 or Claude
- Automatic quality validation and scoring
- Import from HuggingFace datasets
- Upload custom JSON/CSV data
- Duplicate detection and removal
""")
# Tab 3: Model Training
with gr.Tab("π Model Training"):
gr.Markdown("### Train Your Custom AI Model")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=get_available_models(),
value=get_available_models()[0],
label="Select Model"
)
model_info_display = gr.Markdown()
gr.Markdown("### Training Parameters")
train_epochs = gr.Slider(
label="Training Epochs",
minimum=1,
maximum=10,
value=3,
step=1
)
train_lr = gr.Dropdown(
choices=["1e-4", "2e-4", "5e-4"],
value="2e-4",
label="Learning Rate"
)
train_btn = gr.Button("π Start Training", variant="primary", size="lg")
with gr.Column():
training_output = gr.Textbox(
label="Training Status",
lines=20
)
# Wire up model info display
model_selector.change(
fn=get_model_info,
inputs=model_selector,
outputs=model_info_display
)
# Set initial model info
demo.load(
fn=get_model_info,
inputs=model_selector,
outputs=model_info_display
)
# Wire up training
train_btn.click(
fn=train_model,
inputs=[model_selector, data_output, train_epochs, train_lr],
outputs=training_output
)
gr.Markdown("""
**Production Training Features:**
- Real GPU training (local or cloud)
- Live progress monitoring
- Automatic checkpointing
- TensorBoard integration
- WandB experiment tracking
- Automatic evaluation on completion
""")
# Tab 4: Testing
with gr.Tab("π§ͺ Testing"):
gr.Markdown("### Test Your Trained Model")
gr.Markdown("Ask questions to see how your trained model responds.")
with gr.Row():
with gr.Column():
test_question = gr.Textbox(
label="Ask a Question",
lines=3,
value="Should I prioritize paying off my student loans or investing in my 401k?"
)
test_btn = gr.Button("π¬ Get Answer", variant="primary")
with gr.Column():
test_response = gr.Textbox(
label="Model Response",
lines=15
)
test_btn.click(
fn=test_model,
inputs=test_question,
outputs=test_response
)
gr.Markdown("""
**Production Testing Features:**
- Real-time inference from trained model
- Certification exam benchmarks (CFP, CFA, CPA)
- Custom benchmark creation
- A/B testing between model versions
- Performance metrics & analytics
""")
# Tab 5: About
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About LaunchLLM
### π― Mission
Make custom AI model training accessible to domain experts without requiring ML expertise.
### π οΈ Technology Stack
- **Framework:** PyTorch + Hugging Face Transformers
- **Training:** LoRA/PEFT (parameter-efficient fine-tuning)
- **Models:** Qwen, Llama, Mistral, Phi, Gemma
- **Interface:** Gradio (this demo!)
- **Cloud:** RunPod GPU integration
### π Business Model
**Target Market:**
- 10,000+ financial advisory firms in US
- 5,000+ medical practices
- 3,000+ law firms
- Educational institutions
**Pricing:**
- **Self-Service:** $49/month (unlimited training)
- **Professional:** $199/month (priority support)
- **Enterprise:** Custom (dedicated infrastructure)
**Unit Economics:**
- Training cost: $2-10 per model (cloud GPU)
- Average customer value: $2,400/year
- Gross margin: 85%+
### π Traction
- Beta testing with 3 financial advisory firms
- 15+ models trained successfully
- 85%+ pass rate on CFP practice exams
- <60 min average training time
### π₯ Team
- Built for domain experts by ML engineers
- Open source core (Apache 2.0)
- Active community on GitHub
### π Contact
- **GitHub:** https://github.com/brennanmccloud/LaunchLLM
- **Demo:** This Space!
- **Docs:** See GitHub repo
### π Learn More
**What is LoRA?**
Low-Rank Adaptation trains only a small subset of model parameters (1-3%), making it:
- 10x faster than full fine-tuning
- 10x cheaper (less GPU time)
- Works on consumer hardware
- Same quality as full fine-tuning
**What models are supported?**
- Qwen 2.5 (7B, 14B, 32B)
- Llama 3.1 (8B, 70B)
- Mistral 7B
- Phi-3 Mini
- Gemma 2B/7B
- Mixtral 8x7B
**Can I use my own data?**
Yes! Upload JSON/CSV or connect to HuggingFace datasets.
**How long does training take?**
- Small models (7B): 30-60 minutes
- Medium models (30B): 2-4 hours
- Large models (70B): 6-8 hours
**Do I need a GPU?**
Not required - you can use RunPod cloud GPUs ($0.44-1.39/hour).
For best experience: 8GB+ GPU (RTX 3060 or better).
---
**Ready to deploy?** Visit our [GitHub](https://github.com/brennanmccloud/LaunchLLM) for full installation instructions.
""")
gr.Markdown("""
---
**π‘ Note:** This is a demo environment showcasing the platform's capabilities.
**For production deployment:** Visit [GitHub](https://github.com/brennanmccloud/LaunchLLM) to deploy on your infrastructure.
**Questions?** Open an issue on GitHub or contact us.
""")
# Launch the demo
if __name__ == "__main__":
demo.launch()
|