File size: 11,272 Bytes
ec8f374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""
Benchmark Module

Provides benchmark creation and execution for model testing.
"""

from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
import json
import time
from pathlib import Path


@dataclass
class Benchmark:
    """
    A single benchmark test.

    Attributes:
        name: Benchmark name
        description: Benchmark description
        questions: List of test questions
        metadata: Additional metadata
    """
    name: str
    description: str = ""
    questions: List[Dict[str, Any]] = field(default_factory=list)
    metadata: Dict[str, Any] = field(default_factory=dict)
    created_at: Optional[str] = None
    domain: str = "general"
    difficulty: str = "mixed"
    passing_score: float = 70.0

    def __post_init__(self):
        """Initialize timestamp if not provided."""
        if self.created_at is None:
            self.created_at = time.strftime('%Y-%m-%d %H:%M:%S')

    def add_question(
        self,
        question: str,
        answer: str,
        category: Optional[str] = None,
        difficulty: Optional[str] = None,
        metadata: Optional[Dict] = None
    ):
        """
        Add a question to the benchmark.

        Args:
            question: Question text
            answer: Expected answer
            category: Question category/topic
            difficulty: Difficulty level
            metadata: Additional metadata
        """
        question_dict = {
            'question': question,
            'answer': answer,
            'category': category or 'general',
            'difficulty': difficulty or 'intermediate',
            'metadata': metadata or {}
        }
        self.questions.append(question_dict)

    def get_questions_by_category(self, category: str) -> List[Dict]:
        """Get all questions in a category."""
        return [q for q in self.questions if q.get('category') == category]

    def get_questions_by_difficulty(self, difficulty: str) -> List[Dict]:
        """Get all questions of a difficulty level."""
        return [q for q in self.questions if q.get('difficulty') == difficulty]

    def to_dict(self) -> Dict[str, Any]:
        """Convert benchmark to dictionary."""
        return {
            'name': self.name,
            'description': self.description,
            'domain': self.domain,
            'difficulty': self.difficulty,
            'passing_score': self.passing_score,
            'created_at': self.created_at,
            'num_questions': len(self.questions),
            'questions': self.questions,
            'metadata': self.metadata
        }

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> 'Benchmark':
        """Create benchmark from dictionary."""
        return cls(
            name=data.get('name', 'Untitled'),
            description=data.get('description', ''),
            questions=data.get('questions', []),
            metadata=data.get('metadata', {}),
            created_at=data.get('created_at'),
            domain=data.get('domain', 'general'),
            difficulty=data.get('difficulty', 'mixed'),
            passing_score=data.get('passing_score', 70.0)
        )

    def save(self, filepath: str):
        """Save benchmark to JSON file."""
        Path(filepath).parent.mkdir(parents=True, exist_ok=True)

        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(self.to_dict(), f, indent=2, ensure_ascii=False)

        print(f"Benchmark saved to: {filepath}")

    @classmethod
    def load(cls, filepath: str) -> 'Benchmark':
        """Load benchmark from JSON file."""
        with open(filepath, 'r', encoding='utf-8') as f:
            data = json.load(f)

        return cls.from_dict(data)


class BenchmarkSuite:
    """
    Collection of benchmarks for comprehensive testing.

    Features:
    - Multiple benchmark management
    - Batch execution
    - Aggregate scoring
    - Result tracking
    """

    def __init__(self, name: str = "Default Suite"):
        """
        Initialize benchmark suite.

        Args:
            name: Suite name
        """
        self.name = name
        self.benchmarks: List[Benchmark] = []
        self.results: List[Dict[str, Any]] = []

    def add_benchmark(self, benchmark: Benchmark):
        """
        Add a benchmark to the suite.

        Args:
            benchmark: Benchmark to add
        """
        self.benchmarks.append(benchmark)
        print(f"Added benchmark: {benchmark.name}")

    def remove_benchmark(self, benchmark_name: str):
        """
        Remove a benchmark by name.

        Args:
            benchmark_name: Name of benchmark to remove
        """
        self.benchmarks = [b for b in self.benchmarks if b.name != benchmark_name]

    def get_benchmark(self, name: str) -> Optional[Benchmark]:
        """
        Get a benchmark by name.

        Args:
            name: Benchmark name

        Returns:
            Benchmark if found, None otherwise
        """
        for benchmark in self.benchmarks:
            if benchmark.name == name:
                return benchmark
        return None

    def run_benchmark(
        self,
        benchmark: Benchmark,
        model_evaluator: Any,
        max_questions: Optional[int] = None
    ) -> Dict[str, Any]:
        """
        Run a single benchmark.

        Args:
            benchmark: Benchmark to run
            model_evaluator: Model evaluator instance
            max_questions: Maximum questions to test

        Returns:
            Benchmark results
        """
        print(f"\nRunning benchmark: {benchmark.name}")
        print(f"Total questions: {len(benchmark.questions)}")

        questions = benchmark.questions[:max_questions] if max_questions else benchmark.questions

        # Convert to dataset format
        dataset = []
        for q in questions:
            dataset.append({
                'instruction': q['question'],
                'input': '',
                'output': q['answer']
            })

        # Run evaluation
        start_time = time.time()
        eval_results = model_evaluator.evaluate_dataset(dataset)
        total_time = time.time() - start_time

        # Calculate score
        score = self._calculate_score(eval_results)

        # Compile results
        results = {
            'benchmark_name': benchmark.name,
            'num_questions': len(questions),
            'score': score,
            'passed': score >= benchmark.passing_score,
            'passing_score': benchmark.passing_score,
            'total_time': total_time,
            'evaluation_results': eval_results,
            'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
        }

        self.results.append(results)

        print(f"\n{'='*60}")
        print(f"Benchmark: {benchmark.name}")
        print(f"Score: {score:.2f}% (Passing: {benchmark.passing_score}%)")
        print(f"Status: {'βœ… PASSED' if results['passed'] else '❌ FAILED'}")
        print(f"{'='*60}\n")

        return results

    def run_all_benchmarks(
        self,
        model_evaluator: Any,
        max_questions_per_benchmark: Optional[int] = None
    ) -> List[Dict[str, Any]]:
        """
        Run all benchmarks in the suite.

        Args:
            model_evaluator: Model evaluator instance
            max_questions_per_benchmark: Max questions per benchmark

        Returns:
            List of all results
        """
        print(f"\n{'='*60}")
        print(f"Running Benchmark Suite: {self.name}")
        print(f"Total Benchmarks: {len(self.benchmarks)}")
        print(f"{'='*60}\n")

        all_results = []

        for benchmark in self.benchmarks:
            results = self.run_benchmark(
                benchmark,
                model_evaluator,
                max_questions_per_benchmark
            )
            all_results.append(results)

        # Summary
        self._print_summary(all_results)

        return all_results

    def _calculate_score(self, eval_results: Dict[str, Any]) -> float:
        """
        Calculate benchmark score from evaluation results.

        Args:
            eval_results: Evaluation results

        Returns:
            Score percentage
        """
        metrics = eval_results.get('metrics', {})

        # Use available metrics (prioritize accuracy, then BLEU, then ROUGE)
        if 'accuracy' in metrics:
            return metrics['accuracy']
        elif 'bleu' in metrics:
            return metrics['bleu']
        elif 'rouge_l_f1' in metrics:
            return metrics['rouge_l_f1']
        else:
            # Fallback: simple similarity check
            examples = eval_results.get('examples', [])
            if not examples:
                return 0.0

            matches = 0
            for ex in examples:
                pred = ex.get('prediction', '').lower().strip()
                ref = ex.get('reference', '').lower().strip()
                if pred in ref or ref in pred:
                    matches += 1

            return (matches / len(examples)) * 100.0

    def _print_summary(self, results: List[Dict[str, Any]]):
        """Print summary of all benchmark results."""
        print(f"\n{'='*60}")
        print(f"BENCHMARK SUITE SUMMARY: {self.name}")
        print(f"{'='*60}")

        total_benchmarks = len(results)
        passed = sum(1 for r in results if r['passed'])

        print(f"\nOverall: {passed}/{total_benchmarks} benchmarks passed")
        print(f"\nIndividual Results:")

        for result in results:
            status = 'βœ… PASS' if result['passed'] else '❌ FAIL'
            print(f"  {status} | {result['benchmark_name']:40s} | Score: {result['score']:6.2f}%")

        avg_score = sum(r['score'] for r in results) / len(results) if results else 0
        print(f"\nAverage Score: {avg_score:.2f}%")
        print(f"{'='*60}\n")

    def save_results(self, filepath: str):
        """
        Save suite results to JSON.

        Args:
            filepath: Output file path
        """
        Path(filepath).parent.mkdir(parents=True, exist_ok=True)

        data = {
            'suite_name': self.name,
            'num_benchmarks': len(self.benchmarks),
            'benchmark_names': [b.name for b in self.benchmarks],
            'results': self.results,
            'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
        }

        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(data, f, indent=2, ensure_ascii=False)

        print(f"Suite results saved to: {filepath}")

    def to_dict(self) -> Dict[str, Any]:
        """Convert suite to dictionary."""
        return {
            'name': self.name,
            'num_benchmarks': len(self.benchmarks),
            'benchmarks': [b.to_dict() for b in self.benchmarks],
            'results': self.results
        }

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> 'BenchmarkSuite':
        """Create suite from dictionary."""
        suite = cls(name=data.get('name', 'Default Suite'))

        for benchmark_data in data.get('benchmarks', []):
            benchmark = Benchmark.from_dict(benchmark_data)
            suite.add_benchmark(benchmark)

        suite.results = data.get('results', [])

        return suite