Spaces:
Runtime error
Runtime error
File size: 10,523 Bytes
ec8f374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
"""
Model Evaluator Module
Provides model evaluation and inference capabilities.
"""
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
import json
import time
from pathlib import Path
import torch
@dataclass
class EvaluationConfig:
"""
Configuration for model evaluation.
"""
model_name: str = "gpt2"
model_path: Optional[str] = None
max_length: int = 512
temperature: float = 0.7
top_p: float = 0.9
top_k: int = 50
num_beams: int = 1
do_sample: bool = True
batch_size: int = 1
device: str = "auto"
max_samples: Optional[int] = None
save_results: bool = True
output_dir: str = "evaluation_results"
include_metrics: bool = True
include_timings: bool = True
class ModelEvaluator:
"""
Model evaluator for testing and benchmarking LLMs.
Features:
- Inference on test datasets
- Batch processing
- Performance metrics
- Result saving and analysis
"""
def __init__(
self,
config: Optional[EvaluationConfig] = None,
model: Optional[Any] = None,
tokenizer: Optional[Any] = None
):
"""
Initialize evaluator.
Args:
config: Evaluation configuration
model: Pre-loaded model (optional)
tokenizer: Pre-loaded tokenizer (optional)
"""
self.config = config or EvaluationConfig()
self.model = model
self.tokenizer = tokenizer
self.results = []
self.metrics = {}
def load_model(self):
"""Load model and tokenizer."""
if self.model is not None and self.tokenizer is not None:
print("Using pre-loaded model and tokenizer")
return
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
print(f"Loading model: {self.config.model_name}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.model_path or self.config.model_name,
trust_remote_code=True
)
# Ensure pad token exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model
device_map = "auto" if self.config.device == "auto" else None
self.model = AutoModelForCausalLM.from_pretrained(
self.config.model_path or self.config.model_name,
device_map=device_map,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.model.eval()
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise
def generate_response(
self,
prompt: str,
max_length: Optional[int] = None,
temperature: Optional[float] = None
) -> str:
"""
Generate response for a single prompt.
Args:
prompt: Input prompt
max_length: Max generation length
temperature: Sampling temperature
Returns:
Generated text
"""
if self.model is None or self.tokenizer is None:
self.load_model()
max_length = max_length or self.config.max_length
temperature = temperature or self.config.temperature
try:
# Tokenize
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=2048
)
# Move to device
if hasattr(self.model, 'device'):
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=self.config.top_p,
top_k=self.config.top_k,
num_beams=self.config.num_beams,
do_sample=self.config.do_sample,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt from output
if generated_text.startswith(prompt):
generated_text = generated_text[len(prompt):].strip()
return generated_text
except Exception as e:
print(f"Generation error: {e}")
return f"[Error: {str(e)}]"
def evaluate_dataset(
self,
dataset: List[Dict[str, str]],
max_samples: Optional[int] = None
) -> Dict[str, Any]:
"""
Evaluate model on a dataset.
Args:
dataset: List of examples with 'instruction', 'input', 'output'
max_samples: Maximum samples to evaluate
Returns:
Evaluation results
"""
if self.model is None:
self.load_model()
max_samples = max_samples or self.config.max_samples or len(dataset)
dataset = dataset[:max_samples]
print(f"\nEvaluating on {len(dataset)} examples...")
results = []
predictions = []
references = []
start_time = time.time()
for i, example in enumerate(dataset):
# Build prompt
instruction = example.get('instruction', '')
input_text = example.get('input', '')
reference = example.get('output', '')
if input_text:
prompt = f"{instruction}\n\nInput: {input_text}\n\nResponse:"
else:
prompt = f"{instruction}\n\nResponse:"
# Generate
example_start = time.time()
prediction = self.generate_response(prompt)
example_time = time.time() - example_start
# Store results
result = {
'index': i,
'instruction': instruction,
'input': input_text,
'reference': reference,
'prediction': prediction,
'generation_time': example_time
}
results.append(result)
predictions.append(prediction)
references.append(reference)
if (i + 1) % 10 == 0:
print(f" Processed {i + 1}/{len(dataset)} examples...")
total_time = time.time() - start_time
# Calculate metrics
metrics = {}
if self.config.include_metrics:
try:
from .metrics import Metrics
metrics_calc = Metrics()
metrics = metrics_calc.calculate_all_metrics(predictions, references)
except Exception as e:
print(f"Metrics calculation error: {e}")
metrics = {'error': str(e)}
# Compile results
evaluation_results = {
'config': {
'model_name': self.config.model_name,
'model_path': self.config.model_path,
'max_length': self.config.max_length,
'temperature': self.config.temperature,
'num_samples': len(dataset)
},
'metrics': metrics,
'timing': {
'total_time': total_time,
'avg_time_per_example': total_time / len(dataset),
'throughput': len(dataset) / total_time
},
'examples': results
}
# Save results
if self.config.save_results:
self.save_results(evaluation_results)
print(f"\n✅ Evaluation complete!")
print(f"Total time: {total_time:.2f}s")
print(f"Avg time per example: {total_time/len(dataset):.2f}s")
if metrics:
print(f"\nMetrics:")
for key, value in metrics.items():
if isinstance(value, (int, float)):
print(f" {key}: {value:.2f}")
return evaluation_results
def save_results(self, results: Dict[str, Any], filename: Optional[str] = None):
"""
Save evaluation results to JSON.
Args:
results: Evaluation results
filename: Output filename
"""
output_dir = Path(self.config.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if filename is None:
timestamp = time.strftime('%Y%m%d_%H%M%S')
filename = f"evaluation_{timestamp}.json"
filepath = output_dir / filename
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to: {filepath}")
def load_results(self, filepath: str) -> Dict[str, Any]:
"""
Load evaluation results from JSON.
Args:
filepath: Path to results file
Returns:
Loaded results
"""
with open(filepath, 'r', encoding='utf-8') as f:
results = json.load(f)
return results
def compare_results(self, results_list: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Compare multiple evaluation results.
Args:
results_list: List of evaluation results
Returns:
Comparison summary
"""
comparison = {
'num_evaluations': len(results_list),
'models': [r['config']['model_name'] for r in results_list],
'metrics_comparison': {}
}
# Extract metrics
all_metrics = {}
for i, results in enumerate(results_list):
model_name = results['config']['model_name']
all_metrics[model_name] = results.get('metrics', {})
# Compare each metric
metric_names = set()
for metrics in all_metrics.values():
metric_names.update(metrics.keys())
for metric in metric_names:
values = {}
for model, metrics in all_metrics.items():
if metric in metrics:
values[model] = metrics[metric]
if values:
comparison['metrics_comparison'][metric] = values
return comparison
|