Spaces:
Runtime error
Runtime error
File size: 13,281 Bytes
ec8f374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
"""
Gap Analyzer Module
Analyzes model performance to identify knowledge gaps and weak areas.
"""
from typing import List, Dict, Optional, Any, Tuple
import json
from pathlib import Path
from collections import defaultdict
import statistics
class GapAnalyzer:
"""
Analyzes evaluation results to identify knowledge gaps.
Features:
- Topic-level performance analysis
- Trend tracking across evaluations
- Weakness identification
- Strength identification
- Improvement recommendations
"""
def __init__(self):
"""Initialize gap analyzer."""
self.evaluation_history: List[Dict[str, Any]] = []
self.performance_by_category: Dict[str, List[float]] = defaultdict(list)
self.gaps: List[Dict[str, Any]] = []
def add_evaluation_results(self, results: Dict[str, Any]):
"""
Add evaluation results for analysis.
Args:
results: Evaluation results dictionary
"""
self.evaluation_history.append(results)
# Extract category performance if available
if 'examples' in results:
category_scores = defaultdict(list)
for example in results['examples']:
category = example.get('category', 'general')
# Calculate score for this example
prediction = example.get('prediction', '').lower()
reference = example.get('reference', '').lower()
# Simple scoring: 1 if similar, 0 otherwise
score = 1.0 if self._calculate_similarity(prediction, reference) > 0.5 else 0.0
category_scores[category].append(score)
# Store average scores by category
for category, scores in category_scores.items():
avg_score = (sum(scores) / len(scores)) * 100 if scores else 0
self.performance_by_category[category].append(avg_score)
def _calculate_similarity(self, text1: str, text2: str) -> float:
"""Calculate simple similarity between two texts."""
words1 = set(text1.split())
words2 = set(text2.split())
if not words1 or not words2:
return 0.0
intersection = words1 & words2
union = words1 | words2
return len(intersection) / len(union) if union else 0.0
def analyze_gaps(
self,
weak_threshold: float = 60.0,
strong_threshold: float = 85.0
) -> List[Dict[str, Any]]:
"""
Analyze performance and identify gaps.
Args:
weak_threshold: Score below this is considered weak
strong_threshold: Score above this is considered strong
Returns:
List of identified gaps with details
"""
gaps = []
# Analyze each category
for category, scores in self.performance_by_category.items():
if not scores:
continue
avg_score = statistics.mean(scores)
latest_score = scores[-1] if scores else 0
# Calculate trend
trend = "stable"
if len(scores) >= 2:
recent_avg = statistics.mean(scores[-3:]) if len(scores) >= 3 else statistics.mean(scores[-2:])
older_avg = statistics.mean(scores[:-3]) if len(scores) >= 3 else scores[0]
if recent_avg > older_avg + 5:
trend = "improving"
elif recent_avg < older_avg - 5:
trend = "declining"
# Classify performance level
if avg_score < weak_threshold:
level = "WEAK"
priority = "HIGH"
elif avg_score < strong_threshold:
level = "MODERATE"
priority = "MEDIUM"
else:
level = "STRONG"
priority = "LOW"
gap = {
'category': category,
'avg_score': avg_score,
'latest_score': latest_score,
'num_evaluations': len(scores),
'trend': trend,
'level': level,
'priority': priority,
'scores_history': scores
}
gaps.append(gap)
# Sort by priority (weak areas first)
priority_order = {'HIGH': 0, 'MEDIUM': 1, 'LOW': 2}
gaps.sort(key=lambda x: (priority_order.get(x['priority'], 3), x['avg_score']))
self.gaps = gaps
return gaps
def get_weakest_topics(self, n: int = 5) -> List[Dict[str, Any]]:
"""
Get the N weakest topics.
Args:
n: Number of topics to return
Returns:
List of weakest topics
"""
if not self.gaps:
self.analyze_gaps()
weak_gaps = [g for g in self.gaps if g['level'] in ['WEAK', 'MODERATE']]
return weak_gaps[:n]
def get_strongest_topics(self, n: int = 5) -> List[Dict[str, Any]]:
"""
Get the N strongest topics.
Args:
n: Number of topics to return
Returns:
List of strongest topics
"""
if not self.gaps:
self.analyze_gaps()
strong_gaps = [g for g in self.gaps if g['level'] == 'STRONG']
return strong_gaps[:n]
def get_declining_topics(self) -> List[Dict[str, Any]]:
"""Get topics with declining performance."""
if not self.gaps:
self.analyze_gaps()
return [g for g in self.gaps if g['trend'] == 'declining']
def get_improving_topics(self) -> List[Dict[str, Any]]:
"""Get topics with improving performance."""
if not self.gaps:
self.analyze_gaps()
return [g for g in self.gaps if g['trend'] == 'improving']
def generate_gap_report(self) -> str:
"""
Generate a human-readable gap analysis report.
Returns:
Formatted report string
"""
if not self.gaps:
self.analyze_gaps()
report = ["=" * 80]
report.append("KNOWLEDGE GAP ANALYSIS REPORT")
report.append("=" * 80)
report.append("")
# Overall summary
weak_count = sum(1 for g in self.gaps if g['level'] == 'WEAK')
moderate_count = sum(1 for g in self.gaps if g['level'] == 'MODERATE')
strong_count = sum(1 for g in self.gaps if g['level'] == 'STRONG')
report.append(f"Total Categories Analyzed: {len(self.gaps)}")
report.append(f" - WEAK (needs immediate attention): {weak_count}")
report.append(f" - MODERATE (needs improvement): {moderate_count}")
report.append(f" - STRONG (performing well): {strong_count}")
report.append("")
# Weak areas (priority)
weak_topics = [g for g in self.gaps if g['level'] == 'WEAK']
if weak_topics:
report.append("π΄ WEAK AREAS (Priority Training Needed):")
report.append("-" * 80)
for gap in weak_topics:
report.append(f" β’ {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Moderate areas
moderate_topics = [g for g in self.gaps if g['level'] == 'MODERATE']
if moderate_topics:
report.append("π‘ MODERATE AREAS (Recommended Improvement):")
report.append("-" * 80)
for gap in moderate_topics[:5]: # Top 5
report.append(f" β’ {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Strong areas
strong_topics = [g for g in self.gaps if g['level'] == 'STRONG']
if strong_topics:
report.append("π’ STRONG AREAS (Excellent Performance):")
report.append("-" * 80)
for gap in strong_topics[:5]: # Top 5
report.append(f" β’ {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})")
report.append("")
# Trends
declining = self.get_declining_topics()
improving = self.get_improving_topics()
if declining:
report.append("π DECLINING PERFORMANCE (Needs Attention):")
report.append("-" * 80)
for gap in declining:
report.append(f" β’ {gap['category']}: {gap['avg_score']:.1f}%")
report.append("")
if improving:
report.append("π IMPROVING PERFORMANCE (Keep It Up!):")
report.append("-" * 80)
for gap in improving:
report.append(f" β’ {gap['category']}: {gap['avg_score']:.1f}%")
report.append("")
report.append("=" * 80)
return "\n".join(report)
def get_performance_summary(self) -> Dict[str, Any]:
"""
Get overall performance summary.
Returns:
Summary statistics
"""
if not self.gaps:
self.analyze_gaps()
all_scores = [g['avg_score'] for g in self.gaps]
summary = {
'num_categories': len(self.gaps),
'overall_avg_score': statistics.mean(all_scores) if all_scores else 0,
'min_score': min(all_scores) if all_scores else 0,
'max_score': max(all_scores) if all_scores else 0,
'weak_count': sum(1 for g in self.gaps if g['level'] == 'WEAK'),
'moderate_count': sum(1 for g in self.gaps if g['level'] == 'MODERATE'),
'strong_count': sum(1 for g in self.gaps if g['level'] == 'STRONG'),
'declining_count': sum(1 for g in self.gaps if g['trend'] == 'declining'),
'improving_count': sum(1 for g in self.gaps if g['trend'] == 'improving')
}
return summary
def export_gaps(self, filepath: str):
"""
Export gap analysis to JSON file.
Args:
filepath: Output file path
"""
if not self.gaps:
self.analyze_gaps()
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
data = {
'summary': self.get_performance_summary(),
'gaps': self.gaps,
'report': self.generate_gap_report()
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
print(f"Gap analysis exported to: {filepath}")
def load_gaps(self, filepath: str):
"""
Load gap analysis from JSON file.
Args:
filepath: Input file path
"""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
self.gaps = data.get('gaps', [])
# Reconstruct performance_by_category
for gap in self.gaps:
category = gap['category']
scores = gap.get('scores_history', [])
self.performance_by_category[category] = scores
def compare_evaluations(
self,
eval1: Dict[str, Any],
eval2: Dict[str, Any]
) -> Dict[str, Any]:
"""
Compare two evaluation results.
Args:
eval1: First evaluation results
eval2: Second evaluation results
Returns:
Comparison details
"""
comparison = {
'improvement': {},
'decline': {},
'stable': {}
}
# Extract metrics from both
metrics1 = eval1.get('metrics', {})
metrics2 = eval2.get('metrics', {})
# Compare each metric
for metric in set(metrics1.keys()) | set(metrics2.keys()):
if metric in metrics1 and metric in metrics2:
val1 = metrics1[metric]
val2 = metrics2[metric]
if isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
diff = val2 - val1
percent_change = (diff / val1 * 100) if val1 != 0 else 0
if diff > 1: # Improved
comparison['improvement'][metric] = {
'old': val1,
'new': val2,
'change': diff,
'percent_change': percent_change
}
elif diff < -1: # Declined
comparison['decline'][metric] = {
'old': val1,
'new': val2,
'change': diff,
'percent_change': percent_change
}
else: # Stable
comparison['stable'][metric] = {
'old': val1,
'new': val2,
'change': diff
}
return comparison
def get_category_details(self, category: str) -> Optional[Dict[str, Any]]:
"""
Get detailed analysis for a specific category.
Args:
category: Category name
Returns:
Category details or None if not found
"""
if not self.gaps:
self.analyze_gaps()
for gap in self.gaps:
if gap['category'] == category:
return gap
return None
|