Spaces:
Runtime error
Runtime error
File size: 16,506 Bytes
ec8f374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
"""
Intelligent Benchmark & Exam Scraper
Scrapes the web to find domain-specific questions, scenarios, and test content.
Automatically builds comprehensive benchmarks for any use case.
"""
import re
import json
import requests
from typing import List, Dict, Optional
from pathlib import Path
import time
from bs4 import BeautifulSoup
from urllib.parse import quote_plus
class IntelligentBenchmarkScraper:
"""
Scrapes web sources to build domain-specific benchmarks and exams.
Features:
- Web search for relevant content
- Multi-source scraping (Wikipedia, educational sites, forums, documentation)
- Question extraction and generation
- Quality scoring and filtering
- Benchmark formatting
"""
def __init__(self, api_key: Optional[str] = None):
"""
Initialize scraper.
Args:
api_key: OpenAI/Anthropic key for question generation from scraped content
"""
self.api_key = api_key
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
})
def search_web(self, query: str, num_results: int = 10) -> List[Dict]:
"""
Search the web for relevant content using DuckDuckGo (no API key needed).
Args:
query: Search query
num_results: Number of results to return
Returns:
List of search results with title, URL, snippet
"""
results = []
try:
# Use DuckDuckGo HTML search (no API required)
search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}"
response = self.session.get(search_url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Parse results
for result_div in soup.find_all('div', class_='result')[:num_results]:
title_elem = result_div.find('a', class_='result__a')
snippet_elem = result_div.find('a', class_='result__snippet')
if title_elem and snippet_elem:
results.append({
'title': title_elem.get_text(strip=True),
'url': title_elem['href'],
'snippet': snippet_elem.get_text(strip=True)
})
except Exception as e:
print(f"Search error: {e}")
# Fallback: provide some generic sources
results = self._get_fallback_sources(query)
return results
def _get_fallback_sources(self, query: str) -> List[Dict]:
"""Provide fallback educational sources when search fails."""
domain_keywords = query.lower()
sources = []
# Wikipedia
wiki_topic = query.replace(' ', '_')
sources.append({
'title': f"Wikipedia: {query}",
'url': f"https://en.wikipedia.org/wiki/{wiki_topic}",
'snippet': f"Comprehensive overview of {query}"
})
# Add domain-specific sources
if 'financial' in domain_keywords or 'finance' in domain_keywords:
sources.extend([
{
'title': "Investopedia: Financial Certification Exams",
'url': "https://www.investopedia.com/",
'snippet': "Financial education and exam prep"
},
{
'title': "CFP Board Practice Questions",
'url': "https://www.cfp.net/",
'snippet': "CFP certification resources"
}
])
elif 'medical' in domain_keywords or 'health' in domain_keywords:
sources.extend([
{
'title': "NCBI Medical Resources",
'url': "https://www.ncbi.nlm.nih.gov/",
'snippet': "Medical knowledge base"
},
{
'title': "MedlinePlus Health Topics",
'url': "https://medlineplus.gov/",
'snippet': "Consumer health information"
}
])
elif 'legal' in domain_keywords or 'law' in domain_keywords:
sources.extend([
{
'title': "Cornell Legal Information Institute",
'url': "https://www.law.cornell.edu/",
'snippet': "Free legal resources and case law"
}
])
return sources
def scrape_content(self, url: str) -> str:
"""
Scrape text content from a URL.
Args:
url: URL to scrape
Returns:
Extracted text content
"""
try:
response = self.session.get(url, timeout=15)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(['script', 'style', 'header', 'footer', 'nav']):
script.decompose()
# Get text
text = soup.get_text()
# Clean up
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
# Limit size
return text[:10000] # Max 10K chars per page
except Exception as e:
print(f"Scraping error for {url}: {e}")
return ""
def extract_questions_from_text(self, text: str, max_questions: int = 20) -> List[Dict]:
"""
Extract questions from text using pattern matching.
Args:
text: Text content to analyze
max_questions: Maximum questions to extract
Returns:
List of question dicts
"""
questions = []
# Pattern 1: Questions with answers
# Example: "What is X? Y is..."
qa_pattern = r'(?:^|\n)([^.!?]*\?)\s*([^.!?]+[.!?])'
matches = re.findall(qa_pattern, text)
for question, answer in matches[:max_questions//2]:
question = question.strip()
answer = answer.strip()
if len(question) > 20 and len(answer) > 20:
questions.append({
'question': question,
'answer': answer,
'type': 'extracted'
})
# Pattern 2: Numbered/bulleted questions
numbered_pattern = r'(?:^|\n)\s*(?:\d+[\.\)]\s*|[•\-\*]\s*)([^.!?]*\?)'
numbered_matches = re.findall(numbered_pattern, text)
for question in numbered_matches[:max_questions//2]:
question = question.strip()
if len(question) > 20:
questions.append({
'question': question,
'answer': "", # Will be generated later
'type': 'extracted_no_answer'
})
return questions[:max_questions]
def generate_questions_from_content(self, content: str, domain: str, num_questions: int = 10) -> List[Dict]:
"""
Generate questions from content using LLM.
Args:
content: Source content
domain: Domain/topic
num_questions: Number of questions to generate
Returns:
List of generated questions
"""
if not self.api_key:
# Fallback: use simple templates
return self._generate_template_questions(content, domain, num_questions)
try:
# Try OpenAI first
if self.api_key.startswith('sk-'):
from openai import OpenAI
client = OpenAI(api_key=self.api_key)
prompt = f"""Based on the following content about {domain}, generate {num_questions} test questions with answers.
Content:
{content[:3000]}
Format each question as JSON:
{{"question": "...", "answer": "...", "difficulty": "beginner|intermediate|advanced"}}
Return a JSON array of questions."""
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an expert test creator."},
{"role": "user", "content": prompt}
],
temperature=0.7
)
# Parse JSON response
content_text = response.choices[0].message.content
json_match = re.search(r'\[.*\]', content_text, re.DOTALL)
if json_match:
questions = json.loads(json_match.group())
return questions
# Try Anthropic
elif self.api_key.startswith('sk-ant-'):
from anthropic import Anthropic
client = Anthropic(api_key=self.api_key)
prompt = f"""Based on the following content about {domain}, generate {num_questions} test questions with answers.
Content:
{content[:3000]}
Format each question as JSON:
{{"question": "...", "answer": "...", "difficulty": "beginner|intermediate|advanced"}}
Return a JSON array of questions."""
response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=2000,
messages=[
{"role": "user", "content": prompt}
]
)
# Parse JSON response
content_text = response.content[0].text
json_match = re.search(r'\[.*\]', content_text, re.DOTALL)
if json_match:
questions = json.loads(json_match.group())
return questions
except Exception as e:
print(f"LLM generation error: {e}")
# Fallback
return self._generate_template_questions(content, domain, num_questions)
def _generate_template_questions(self, content: str, domain: str, num_questions: int) -> List[Dict]:
"""Generate basic questions using templates when no API available."""
questions = []
# Extract key terms (simple approach)
words = content.split()
unique_words = list(set([w for w in words if len(w) > 5]))[:num_questions]
templates = [
("What is {term}?", "answer_placeholder"),
("Explain the concept of {term}.", "answer_placeholder"),
("How does {term} work in the context of {domain}?", "answer_placeholder"),
("What are the key aspects of {term}?", "answer_placeholder"),
]
for i, term in enumerate(unique_words[:num_questions]):
template = templates[i % len(templates)]
questions.append({
'question': template[0].format(term=term, domain=domain),
'answer': f"This question requires domain expertise in {domain} regarding {term}.",
'difficulty': 'intermediate',
'type': 'template_generated'
})
return questions
def build_benchmark(
self,
domain: str,
num_questions: int = 50,
use_llm: bool = True
) -> Dict:
"""
Build a comprehensive benchmark for a domain.
Args:
domain: Domain/topic (e.g., "financial planning", "medical diagnostics")
num_questions: Target number of questions
use_llm: Whether to use LLM for question generation
Returns:
Benchmark dict with questions
"""
print(f"Building benchmark for: {domain}")
print(f"Target questions: {num_questions}")
all_questions = []
# Step 1: Search for relevant content
print("\n[1/4] Searching web for content...")
search_queries = [
f"{domain} practice questions",
f"{domain} exam questions",
f"{domain} test scenarios",
f"{domain} certification study guide"
]
all_sources = []
for query in search_queries:
sources = self.search_web(query, num_results=5)
all_sources.extend(sources)
time.sleep(1) # Rate limiting
print(f"Found {len(all_sources)} sources")
# Step 2: Scrape content from sources
print("\n[2/4] Scraping content from sources...")
scraped_content = []
for i, source in enumerate(all_sources[:10]): # Limit to 10 sources
print(f" Scraping {i+1}/10: {source['title'][:50]}...")
content = self.scrape_content(source['url'])
if content:
scraped_content.append({
'url': source['url'],
'title': source['title'],
'content': content
})
time.sleep(1) # Be polite
print(f"Successfully scraped {len(scraped_content)} pages")
# Step 3: Extract existing questions
print("\n[3/4] Extracting questions from content...")
for item in scraped_content:
extracted = self.extract_questions_from_text(item['content'])
for q in extracted:
q['source'] = item['url']
q['source_title'] = item['title']
all_questions.extend(extracted)
print(f"Extracted {len(all_questions)} questions from sources")
# Step 4: Generate additional questions if needed
if use_llm and len(all_questions) < num_questions:
print("\n[4/4] Generating additional questions using LLM...")
remaining = num_questions - len(all_questions)
# Use best content for generation
best_content = max(scraped_content, key=lambda x: len(x['content']))['content'] if scraped_content else ""
if best_content:
generated = self.generate_questions_from_content(
best_content,
domain,
num_questions=remaining
)
all_questions.extend(generated)
print(f"Generated {len(generated)} additional questions")
# Build final benchmark
benchmark = {
'name': f"{domain.title()} Benchmark",
'domain': domain,
'description': f"Automatically generated benchmark for {domain} with {len(all_questions)} questions",
'created_at': time.strftime('%Y-%m-%d %H:%M:%S'),
'num_questions': len(all_questions),
'sources': [s['url'] for s in scraped_content],
'questions': all_questions[:num_questions]
}
print(f"\n[OK] Benchmark created with {len(benchmark['questions'])} questions")
return benchmark
def save_benchmark(self, benchmark: Dict, filepath: str):
"""Save benchmark to JSON file."""
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(benchmark, f, indent=2, ensure_ascii=False)
print(f"Saved benchmark to: {filepath}")
def create_scraped_benchmark(domain: str, num_questions: int = 50, api_key: Optional[str] = None) -> str:
"""
Helper function to create a benchmark from web scraping.
Args:
domain: Domain/topic
num_questions: Number of questions
api_key: Optional API key for LLM generation
Returns:
Status message
"""
scraper = IntelligentBenchmarkScraper(api_key=api_key)
benchmark = scraper.build_benchmark(
domain=domain,
num_questions=num_questions,
use_llm=bool(api_key)
)
# Save
filename = domain.lower().replace(' ', '_')
filepath = f"benchmarks/{filename}_benchmark.json"
scraper.save_benchmark(benchmark, filepath)
return filepath, benchmark
if __name__ == "__main__":
# Test
import sys
domain = sys.argv[1] if len(sys.argv) > 1 else "financial planning"
scraper = IntelligentBenchmarkScraper()
benchmark = scraper.build_benchmark(domain, num_questions=20, use_llm=False)
print("\nSample questions:")
for i, q in enumerate(benchmark['questions'][:3], 1):
print(f"\n{i}. {q['question']}")
if q.get('answer'):
print(f" A: {q['answer'][:100]}...")
|