File size: 7,374 Bytes
ec8f374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
Metrics Module

Provides various evaluation metrics for model performance assessment.
"""

import numpy as np
from typing import List, Dict, Optional, Union
import math


class Metrics:
    """
    Comprehensive metrics calculator for model evaluation.

    Supports:
    - BLEU score
    - ROUGE-L
    - Perplexity
    - Custom financial domain metrics
    """

    def __init__(self):
        """Initialize metrics calculator."""
        self.results = {}

    def calculate_bleu(
        self,
        references: List[str],
        hypotheses: List[str],
        max_n: int = 4
    ) -> float:
        """
        Calculate BLEU score.

        Args:
            references: Reference texts
            hypotheses: Generated texts
            max_n: Maximum n-gram size

        Returns:
            BLEU score (0-100)
        """
        try:
            from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction

            # Tokenize
            ref_tokens = [[ref.split()] for ref in references]
            hyp_tokens = [hyp.split() for hyp in hypotheses]

            # Calculate with smoothing
            smoothing = SmoothingFunction()
            score = corpus_bleu(
                ref_tokens,
                hyp_tokens,
                smoothing_function=smoothing.method1
            )

            return score * 100.0

        except ImportError:
            # Fallback: simple word overlap
            return self._simple_bleu(references, hypotheses)

    def _simple_bleu(self, references: List[str], hypotheses: List[str]) -> float:
        """Simple BLEU approximation without NLTK."""
        total_overlap = 0
        total_length = 0

        for ref, hyp in zip(references, hypotheses):
            ref_words = set(ref.lower().split())
            hyp_words = set(hyp.lower().split())
            overlap = len(ref_words & hyp_words)
            total_overlap += overlap
            total_length += max(len(ref_words), len(hyp_words))

        if total_length == 0:
            return 0.0

        return (total_overlap / total_length) * 100.0

    def calculate_rouge_l(
        self,
        references: List[str],
        hypotheses: List[str]
    ) -> Dict[str, float]:
        """
        Calculate ROUGE-L score.

        Args:
            references: Reference texts
            hypotheses: Generated texts

        Returns:
            Dict with precision, recall, f1
        """
        total_precision = 0
        total_recall = 0
        total_f1 = 0

        for ref, hyp in zip(references, hypotheses):
            ref_words = ref.split()
            hyp_words = hyp.split()

            # Find longest common subsequence
            lcs_length = self._lcs_length(ref_words, hyp_words)

            # Calculate metrics
            precision = lcs_length / len(hyp_words) if len(hyp_words) > 0 else 0
            recall = lcs_length / len(ref_words) if len(ref_words) > 0 else 0
            f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) > 0 else 0

            total_precision += precision
            total_recall += recall
            total_f1 += f1

        n = len(references)
        return {
            'precision': (total_precision / n) * 100.0 if n > 0 else 0.0,
            'recall': (total_recall / n) * 100.0 if n > 0 else 0.0,
            'f1': (total_f1 / n) * 100.0 if n > 0 else 0.0
        }

    def _lcs_length(self, seq1: List[str], seq2: List[str]) -> int:
        """Calculate longest common subsequence length."""
        m, n = len(seq1), len(seq2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if seq1[i-1] == seq2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])

        return dp[m][n]

    def calculate_perplexity(
        self,
        log_probs: List[float]
    ) -> float:
        """
        Calculate perplexity from log probabilities.

        Args:
            log_probs: List of log probabilities

        Returns:
            Perplexity score
        """
        if not log_probs:
            return float('inf')

        avg_log_prob = sum(log_probs) / len(log_probs)
        perplexity = math.exp(-avg_log_prob)

        return perplexity

    def calculate_accuracy(
        self,
        predictions: List[str],
        references: List[str]
    ) -> float:
        """
        Calculate exact match accuracy.

        Args:
            predictions: Predicted answers
            references: Reference answers

        Returns:
            Accuracy percentage
        """
        if not predictions or not references:
            return 0.0

        matches = sum(
            pred.strip().lower() == ref.strip().lower()
            for pred, ref in zip(predictions, references)
        )

        return (matches / len(predictions)) * 100.0

    def calculate_all_metrics(
        self,
        predictions: List[str],
        references: List[str],
        log_probs: Optional[List[float]] = None
    ) -> Dict[str, float]:
        """
        Calculate all available metrics.

        Args:
            predictions: Model predictions
            references: Reference answers
            log_probs: Optional log probabilities for perplexity

        Returns:
            Dict of all metrics
        """
        metrics = {}

        # BLEU
        try:
            metrics['bleu'] = self.calculate_bleu(references, predictions)
        except Exception as e:
            print(f"BLEU calculation error: {e}")
            metrics['bleu'] = 0.0

        # ROUGE-L
        try:
            rouge = self.calculate_rouge_l(references, predictions)
            metrics['rouge_l_precision'] = rouge['precision']
            metrics['rouge_l_recall'] = rouge['recall']
            metrics['rouge_l_f1'] = rouge['f1']
        except Exception as e:
            print(f"ROUGE calculation error: {e}")
            metrics['rouge_l_f1'] = 0.0

        # Accuracy
        try:
            metrics['accuracy'] = self.calculate_accuracy(predictions, references)
        except Exception as e:
            print(f"Accuracy calculation error: {e}")
            metrics['accuracy'] = 0.0

        # Perplexity
        if log_probs:
            try:
                metrics['perplexity'] = self.calculate_perplexity(log_probs)
            except Exception as e:
                print(f"Perplexity calculation error: {e}")
                metrics['perplexity'] = float('inf')

        # Average response length
        metrics['avg_response_length'] = sum(len(p.split()) for p in predictions) / len(predictions)

        return metrics


def calculate_perplexity(log_probs: List[float]) -> float:
    """
    Standalone function to calculate perplexity.

    Args:
        log_probs: List of log probabilities

    Returns:
        Perplexity score
    """
    metrics = Metrics()
    return metrics.calculate_perplexity(log_probs)


def calculate_bleu(references: List[str], hypotheses: List[str]) -> float:
    """
    Standalone function to calculate BLEU score.

    Args:
        references: Reference texts
        hypotheses: Generated texts

    Returns:
        BLEU score (0-100)
    """
    metrics = Metrics()
    return metrics.calculate_bleu(references, hypotheses)