Spaces:
Runtime error
Runtime error
File size: 16,812 Bytes
ec8f374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
"""
Training Recommender Module
Provides AI-driven recommendations for next training session based on gap analysis.
"""
from typing import List, Dict, Optional, Any, Tuple
import json
from pathlib import Path
from collections import defaultdict
class TrainingRecommender:
"""
Recommends training strategies based on performance gaps.
Features:
- Targeted training recommendations
- Data generation suggestions
- Priority-based training plans
- Progress tracking
"""
def __init__(self, gap_analyzer: Optional[Any] = None):
"""
Initialize training recommender.
Args:
gap_analyzer: GapAnalyzer instance with performance data
"""
self.gap_analyzer = gap_analyzer
self.recommendations: List[Dict[str, Any]] = []
def generate_recommendations(
self,
max_recommendations: int = 5,
focus_on_weak: bool = True
) -> List[Dict[str, Any]]:
"""
Generate training recommendations based on gaps.
Args:
max_recommendations: Maximum number of recommendations
focus_on_weak: Prioritize weak areas over moderate ones
Returns:
List of training recommendations
"""
if not self.gap_analyzer or not self.gap_analyzer.gaps:
return [{
'category': 'General',
'priority': 'MEDIUM',
'action': 'No performance data available. Start with general training.',
'estimated_examples': 100,
'topics': ['General training data']
}]
recommendations = []
# Get gaps to address
gaps = self.gap_analyzer.gaps
if focus_on_weak:
# Focus on weak and declining areas first
priority_gaps = [
g for g in gaps
if g['level'] == 'WEAK' or g['trend'] == 'declining'
]
if not priority_gaps:
# Fall back to moderate areas
priority_gaps = [g for g in gaps if g['level'] == 'MODERATE']
else:
# Include all non-strong areas
priority_gaps = [g for g in gaps if g['level'] != 'STRONG']
# Generate recommendations for top gaps
for gap in priority_gaps[:max_recommendations]:
recommendation = self._create_recommendation(gap)
recommendations.append(recommendation)
self.recommendations = recommendations
return recommendations
def _create_recommendation(self, gap: Dict[str, Any]) -> Dict[str, Any]:
"""
Create a detailed recommendation for a gap.
Args:
gap: Gap analysis data
Returns:
Training recommendation
"""
category = gap['category']
avg_score = gap['avg_score']
level = gap['level']
# Determine number of examples needed
if avg_score < 40:
estimated_examples = 100
intensity = "intensive"
elif avg_score < 60:
estimated_examples = 50
intensity = "moderate"
else:
estimated_examples = 25
intensity = "light"
# Generate specific action items
action_items = self._generate_action_items(category, level, gap['trend'])
# Suggest topics
topics = self._suggest_topics(category)
recommendation = {
'category': category,
'priority': gap['priority'],
'current_score': avg_score,
'trend': gap['trend'],
'intensity': intensity,
'estimated_examples': estimated_examples,
'action': f"Focus on {category} with {intensity} training",
'action_items': action_items,
'suggested_topics': topics,
'expected_improvement': self._estimate_improvement(avg_score, estimated_examples)
}
return recommendation
def _generate_action_items(
self,
category: str,
level: str,
trend: str
) -> List[str]:
"""
Generate specific action items for a category.
Args:
category: Category name
level: Performance level
trend: Performance trend
Returns:
List of action items
"""
items = []
# Base recommendations based on level
if level == 'WEAK':
items.append(f"Add 50-100 {category} examples to training data")
items.append(f"Review fundamental {category} concepts")
items.append("Include diverse question types and difficulty levels")
elif level == 'MODERATE':
items.append(f"Add 25-50 {category} examples focusing on edge cases")
items.append(f"Review intermediate {category} topics")
else:
items.append(f"Maintain current {category} performance with 10-20 examples")
# Add trend-specific items
if trend == 'declining':
items.append("β οΈ Address declining performance immediately")
items.append(f"Review recent {category} training data for quality issues")
elif trend == 'improving':
items.append("β
Continue current training approach")
# Add testing recommendation
items.append(f"Test specifically on {category} after training")
return items
def _suggest_topics(self, category: str) -> List[str]:
"""
Suggest specific topics for a category.
Args:
category: Category name
Returns:
List of suggested topics
"""
# Topic suggestions by common categories
topic_map = {
'Estate Planning': [
'Revocable living trusts',
'Wills and probate',
'Power of attorney',
'Estate tax strategies',
'Charitable giving',
'Trust structures'
],
'Retirement Planning': [
'401(k) and IRA strategies',
'Required minimum distributions',
'Social Security optimization',
'Pension planning',
'Retirement income strategies',
'Healthcare in retirement'
],
'Tax Planning': [
'Tax-efficient investing',
'Capital gains strategies',
'Tax-loss harvesting',
'Deductions and credits',
'Alternative minimum tax',
'Estate and gift taxes'
],
'Investment Planning': [
'Asset allocation',
'Portfolio diversification',
'Risk management',
'Modern portfolio theory',
'Performance evaluation',
'Rebalancing strategies'
],
'Insurance Planning': [
'Life insurance types',
'Disability insurance',
'Long-term care insurance',
'Property and casualty',
'Umbrella policies',
'Insurance needs analysis'
],
'Education Planning': [
'529 plans',
'Coverdell ESAs',
'Financial aid strategies',
'Student loan planning',
'Education tax benefits'
]
}
# Return specific topics if available, otherwise generic suggestions
if category in topic_map:
return topic_map[category]
else:
return [
f"Fundamental {category} concepts",
f"Intermediate {category} topics",
f"Advanced {category} strategies",
f"{category} best practices",
f"Common {category} scenarios"
]
def _estimate_improvement(
self,
current_score: float,
num_examples: int
) -> str:
"""
Estimate expected improvement from training.
Args:
current_score: Current performance score
num_examples: Number of training examples
Returns:
Improvement estimate description
"""
# Simple heuristic: more examples = more improvement, diminishing returns
base_improvement = min(num_examples * 0.3, 30) # Max 30% improvement
# Lower scores have more room for improvement
if current_score < 40:
multiplier = 1.5
elif current_score < 60:
multiplier = 1.2
else:
multiplier = 0.8
estimated_improvement = base_improvement * multiplier
new_score = min(current_score + estimated_improvement, 95)
return f"+{estimated_improvement:.1f}% (to ~{new_score:.1f}%)"
def create_training_plan(
self,
priority: str = "all",
include_data_generation: bool = True
) -> Dict[str, Any]:
"""
Create a comprehensive training plan.
Args:
priority: Focus on "high", "medium", "low", or "all" priority items
include_data_generation: Include data generation instructions
Returns:
Training plan
"""
if not self.recommendations:
self.generate_recommendations()
# Filter by priority
if priority.upper() != "ALL":
filtered_recs = [
r for r in self.recommendations
if r['priority'] == priority.upper()
]
else:
filtered_recs = self.recommendations
# Calculate totals
total_examples = sum(r['estimated_examples'] for r in filtered_recs)
categories = [r['category'] for r in filtered_recs]
plan = {
'plan_name': f"Training Plan - Priority: {priority.title()}",
'num_focus_areas': len(filtered_recs),
'focus_categories': categories,
'total_examples_needed': total_examples,
'recommendations': filtered_recs,
'execution_steps': self._generate_execution_steps(filtered_recs),
}
if include_data_generation:
plan['data_generation'] = self._generate_data_instructions(filtered_recs)
return plan
def _generate_execution_steps(
self,
recommendations: List[Dict[str, Any]]
) -> List[str]:
"""Generate step-by-step execution plan."""
steps = [
"1. Review gap analysis and recommendations",
"2. Prepare training data:"
]
for i, rec in enumerate(recommendations, 1):
steps.append(f" {chr(96+i)}. {rec['category']}: {rec['estimated_examples']} examples")
steps.extend([
"3. Generate or collect training examples",
"4. Validate data quality (score > 60)",
"5. Execute training session",
"6. Run targeted benchmark tests",
"7. Analyze results and compare to previous performance",
"8. Iterate if needed"
])
return steps
def _generate_data_instructions(
self,
recommendations: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Generate data generation instructions."""
instructions = {
'method': 'synthetic_generation',
'by_category': {}
}
for rec in recommendations:
category = rec['category']
instructions['by_category'][category] = {
'num_examples': rec['estimated_examples'],
'difficulty': 'mixed',
'topics': rec['suggested_topics'],
'sample_prompt': f"Generate financial advisory questions about {category}, covering topics like: {', '.join(rec['suggested_topics'][:3])}"
}
return instructions
def generate_report(self) -> str:
"""
Generate human-readable training recommendations report.
Returns:
Formatted report
"""
if not self.recommendations:
self.generate_recommendations()
report = ["=" * 80]
report.append("TRAINING RECOMMENDATIONS REPORT")
report.append("=" * 80)
report.append("")
if not self.recommendations:
report.append("No recommendations available. Performance data needed.")
return "\n".join(report)
# Summary
total_examples = sum(r['estimated_examples'] for r in self.recommendations)
report.append(f"Total Focus Areas: {len(self.recommendations)}")
report.append(f"Total Training Examples Needed: {total_examples}")
report.append("")
# Detailed recommendations
report.append("RECOMMENDED TRAINING PRIORITIES:")
report.append("-" * 80)
for i, rec in enumerate(self.recommendations, 1):
priority_symbol = {
'HIGH': 'π΄',
'MEDIUM': 'π‘',
'LOW': 'π’'
}.get(rec['priority'], 'βͺ')
report.append(f"\n{i}. {priority_symbol} {rec['category']} - Priority: {rec['priority']}")
report.append(f" Current Score: {rec['current_score']:.1f}%")
report.append(f" Trend: {rec['trend']}")
report.append(f" Training Intensity: {rec['intensity']}")
report.append(f" Recommended Examples: {rec['estimated_examples']}")
report.append(f" Expected Improvement: {rec['expected_improvement']}")
report.append("")
report.append(" Action Items:")
for item in rec['action_items']:
report.append(f" β’ {item}")
report.append("")
report.append(" Suggested Topics:")
for topic in rec['suggested_topics'][:5]: # Top 5 topics
report.append(f" - {topic}")
report.append("")
report.append("=" * 80)
report.append("NEXT STEPS:")
report.append("")
report.append("1. Generate training data for priority categories")
report.append("2. Focus on weak/declining areas first")
report.append("3. Use diverse examples covering suggested topics")
report.append("4. Run targeted tests after training")
report.append("5. Track improvement and adjust strategy")
report.append("=" * 80)
return "\n".join(report)
def save_recommendations(self, filepath: str):
"""
Save recommendations to JSON file.
Args:
filepath: Output file path
"""
if not self.recommendations:
self.generate_recommendations()
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
data = {
'recommendations': self.recommendations,
'training_plan': self.create_training_plan(),
'report': self.generate_report()
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
print(f"Recommendations saved to: {filepath}")
def load_recommendations(self, filepath: str):
"""
Load recommendations from JSON file.
Args:
filepath: Input file path
"""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
self.recommendations = data.get('recommendations', [])
def get_quick_wins(self) -> List[Dict[str, Any]]:
"""
Identify quick wins - categories that can improve quickly.
Returns:
List of quick win opportunities
"""
if not self.recommendations:
self.generate_recommendations()
# Quick wins: moderate performance, not too many examples needed
quick_wins = [
rec for rec in self.recommendations
if 50 <= rec['current_score'] < 70 and rec['estimated_examples'] <= 50
]
return quick_wins
def prioritize_by_impact(self) -> List[Dict[str, Any]]:
"""
Sort recommendations by expected impact.
Returns:
Recommendations sorted by impact
"""
if not self.recommendations:
self.generate_recommendations()
# Calculate impact score (combination of priority and potential improvement)
def impact_score(rec):
priority_weight = {'HIGH': 3, 'MEDIUM': 2, 'LOW': 1}
improvement_potential = 100 - rec['current_score']
return priority_weight.get(rec['priority'], 1) * improvement_potential
sorted_recs = sorted(
self.recommendations,
key=impact_score,
reverse=True
)
return sorted_recs
|