LaunchLLM / data_aggregation /tool_use_generator.py
Bmccloud22's picture
Deploy LaunchLLM - Production AI Training Platform
ec8f374 verified
"""
Tool Use Generator Module
Generates training data for teaching LLMs to use tools and functions.
"""
import json
from typing import List, Dict, Any, Optional
class ToolUseGenerator:
"""Generate tool use training data for function calling."""
def __init__(self, tools: Optional[List[Dict]] = None):
"""
Initialize tool use generator.
Args:
tools: List of tool definitions
"""
self.tools = tools or self._get_default_financial_tools()
def _get_default_financial_tools(self) -> List[Dict]:
"""Get default financial tools."""
return [
{
"name": "get_market_data",
"description": "Get current market data for a stock",
"parameters": {
"symbol": "string",
"data_type": "string (price, volume, market_cap)"
},
"returns": "dict"
},
{
"name": "calculate_compound_interest",
"description": "Calculate compound interest",
"parameters": {
"principal": "float",
"rate": "float",
"time": "float",
"frequency": "int"
},
"returns": "float"
},
{
"name": "get_portfolio_allocation",
"description": "Get current portfolio allocation",
"parameters": {
"user_id": "string"
},
"returns": "dict"
},
{
"name": "calculate_retirement_needs",
"description": "Calculate retirement savings needs",
"parameters": {
"current_age": "int",
"retirement_age": "int",
"current_savings": "float",
"annual_contribution": "float"
},
"returns": "dict"
}
]
def generate_tool_use_examples(
self,
num_examples: int = 10,
complexity: str = "single"
) -> List[Dict[str, Any]]:
"""
Generate tool use training examples.
Args:
num_examples: Number of examples to generate
complexity: "single" or "multi" (multi-step tool chains)
Returns:
List of tool use examples
"""
examples = []
for _ in range(num_examples):
if complexity == "single":
example = self._generate_single_tool_example()
else:
example = self._generate_multi_tool_example()
if example:
examples.append(example)
return examples
def _generate_single_tool_example(self) -> Dict[str, Any]:
"""Generate example with single tool call."""
import random
tool = random.choice(self.tools)
# Create example based on tool
if tool["name"] == "get_market_data":
return {
"instruction": "What is the current price of Apple stock?",
"input": "",
"output": "I'll check the current market data for Apple stock.",
"tool_calls": [
{
"tool": "get_market_data",
"parameters": {
"symbol": "AAPL",
"data_type": "price"
}
}
]
}
elif tool["name"] == "calculate_compound_interest":
return {
"instruction": "If I invest $10,000 at 5% interest compounded quarterly, how much will I have in 10 years?",
"input": "",
"output": "I'll calculate that for you using compound interest formula.",
"tool_calls": [
{
"tool": "calculate_compound_interest",
"parameters": {
"principal": 10000,
"rate": 0.05,
"time": 10,
"frequency": 4
}
}
]
}
# Generic example
return {
"instruction": f"Use the {tool['name']} tool",
"input": "",
"output": f"I'll use {tool['name']} to help with that.",
"tool_calls": [{"tool": tool["name"], "parameters": {}}]
}
def _generate_multi_tool_example(self) -> Dict[str, Any]:
"""Generate example with multiple tool calls (chain)."""
return {
"instruction": "Should I rebalance my portfolio given current market conditions?",
"input": "",
"output": "Let me check your portfolio and current market data to provide a recommendation.",
"tool_calls": [
{
"tool": "get_portfolio_allocation",
"parameters": {"user_id": "user123"}
},
{
"tool": "get_market_data",
"parameters": {"symbol": "SPY", "data_type": "price"}
}
],
"reasoning": "First get the user's current portfolio allocation, then check market conditions, and finally provide rebalancing advice."
}
def add_custom_tool(self, tool: Dict[str, Any]) -> None:
"""
Add a custom tool definition.
Args:
tool: Tool definition dict
"""
required_keys = ["name", "description", "parameters", "returns"]
if not all(key in tool for key in required_keys):
raise ValueError(f"Tool must have keys: {required_keys}")
self.tools.append(tool)
def get_tools_schema(self) -> List[Dict]:
"""Get OpenAI-compatible tools schema."""
schema = []
for tool in self.tools:
schema.append({
"type": "function",
"function": {
"name": tool["name"],
"description": tool["description"],
"parameters": {
"type": "object",
"properties": tool["parameters"],
"required": list(tool["parameters"].keys())
}
}
})
return schema