LaunchLLM / evaluation /benchmark_builder.py
Bmccloud22's picture
Deploy LaunchLLM - Production AI Training Platform
ec8f374 verified
"""
Benchmark Builder Module
Provides interactive tools for creating custom benchmarks.
"""
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any, Callable
import json
import time
from pathlib import Path
@dataclass
class Benchmark:
"""
A single benchmark test (builder variant).
This is a builder-specific implementation with enhanced
interactive creation features.
"""
name: str
description: str = ""
questions: List[Dict[str, Any]] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
created_at: Optional[str] = None
domain: str = "general"
difficulty: str = "mixed"
passing_score: float = 70.0
categories: List[str] = field(default_factory=list)
tags: List[str] = field(default_factory=list)
def __post_init__(self):
"""Initialize timestamp if not provided."""
if self.created_at is None:
self.created_at = time.strftime('%Y-%m-%d %H:%M:%S')
def add_question(
self,
question: str,
answer: str,
category: Optional[str] = None,
difficulty: Optional[str] = None,
metadata: Optional[Dict] = None,
explanation: Optional[str] = None,
points: float = 1.0
):
"""
Add a question to the benchmark.
Args:
question: Question text
answer: Expected answer
category: Question category/topic
difficulty: Difficulty level
metadata: Additional metadata
explanation: Answer explanation
points: Points for this question
"""
question_dict = {
'id': len(self.questions),
'question': question,
'answer': answer,
'category': category or 'general',
'difficulty': difficulty or 'intermediate',
'explanation': explanation or '',
'points': points,
'metadata': metadata or {}
}
self.questions.append(question_dict)
# Update categories list
if category and category not in self.categories:
self.categories.append(category)
def add_multiple_choice_question(
self,
question: str,
choices: List[str],
correct_answer: str,
category: Optional[str] = None,
difficulty: Optional[str] = None,
explanation: Optional[str] = None
):
"""
Add a multiple choice question.
Args:
question: Question text
choices: List of answer choices
correct_answer: The correct answer
category: Question category
difficulty: Difficulty level
explanation: Answer explanation
"""
self.add_question(
question=question,
answer=correct_answer,
category=category,
difficulty=difficulty,
explanation=explanation,
metadata={
'type': 'multiple_choice',
'choices': choices
}
)
def import_from_json(self, filepath: str):
"""
Import questions from JSON file.
Args:
filepath: Path to JSON file
"""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# Handle different JSON formats
if isinstance(data, list):
# List of questions
for item in data:
self.add_question(
question=item.get('question', ''),
answer=item.get('answer', ''),
category=item.get('category'),
difficulty=item.get('difficulty'),
metadata=item.get('metadata', {})
)
elif isinstance(data, dict):
# Benchmark format
if 'questions' in data:
for item in data['questions']:
self.add_question(
question=item.get('question', ''),
answer=item.get('answer', ''),
category=item.get('category'),
difficulty=item.get('difficulty'),
metadata=item.get('metadata', {})
)
print(f"Imported {len(self.questions)} questions from {filepath}")
def import_from_csv(self, filepath: str, delimiter: str = ','):
"""
Import questions from CSV file.
Expected columns: question, answer, category, difficulty
Args:
filepath: Path to CSV file
delimiter: CSV delimiter
"""
import csv
with open(filepath, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f, delimiter=delimiter)
for row in reader:
self.add_question(
question=row.get('question', ''),
answer=row.get('answer', ''),
category=row.get('category'),
difficulty=row.get('difficulty')
)
print(f"Imported {len(self.questions)} questions from CSV")
def get_statistics(self) -> Dict[str, Any]:
"""Get benchmark statistics."""
stats = {
'total_questions': len(self.questions),
'categories': {},
'difficulties': {},
'avg_question_length': 0,
'avg_answer_length': 0
}
# Count by category
for q in self.questions:
cat = q.get('category', 'uncategorized')
stats['categories'][cat] = stats['categories'].get(cat, 0) + 1
diff = q.get('difficulty', 'unknown')
stats['difficulties'][diff] = stats['difficulties'].get(diff, 0) + 1
# Calculate averages
if self.questions:
total_q_len = sum(len(q['question']) for q in self.questions)
total_a_len = sum(len(q['answer']) for q in self.questions)
stats['avg_question_length'] = total_q_len / len(self.questions)
stats['avg_answer_length'] = total_a_len / len(self.questions)
return stats
def validate(self) -> List[str]:
"""
Validate benchmark and return list of issues.
Returns:
List of validation issues (empty if valid)
"""
issues = []
if not self.name:
issues.append("Benchmark name is required")
if not self.questions:
issues.append("Benchmark has no questions")
for i, q in enumerate(self.questions):
if not q.get('question'):
issues.append(f"Question {i} is missing question text")
if not q.get('answer'):
issues.append(f"Question {i} is missing answer")
return issues
def to_dict(self) -> Dict[str, Any]:
"""Convert benchmark to dictionary."""
return {
'name': self.name,
'description': self.description,
'domain': self.domain,
'difficulty': self.difficulty,
'passing_score': self.passing_score,
'created_at': self.created_at,
'categories': self.categories,
'tags': self.tags,
'num_questions': len(self.questions),
'questions': self.questions,
'metadata': self.metadata,
'statistics': self.get_statistics()
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'Benchmark':
"""Create benchmark from dictionary."""
return cls(
name=data.get('name', 'Untitled'),
description=data.get('description', ''),
questions=data.get('questions', []),
metadata=data.get('metadata', {}),
created_at=data.get('created_at'),
domain=data.get('domain', 'general'),
difficulty=data.get('difficulty', 'mixed'),
passing_score=data.get('passing_score', 70.0),
categories=data.get('categories', []),
tags=data.get('tags', [])
)
def save(self, filepath: str):
"""Save benchmark to JSON file."""
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(self.to_dict(), f, indent=2, ensure_ascii=False)
print(f"Benchmark saved to: {filepath}")
@classmethod
def load(cls, filepath: str) -> 'Benchmark':
"""Load benchmark from JSON file."""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
return cls.from_dict(data)
class BenchmarkSuite:
"""
Collection of benchmarks with enhanced building features.
"""
def __init__(self, name: str = "Default Suite"):
"""
Initialize benchmark suite.
Args:
name: Suite name
"""
self.name = name
self.description = ""
self.benchmarks: List[Benchmark] = []
self.metadata: Dict[str, Any] = {}
def add_benchmark(self, benchmark: Benchmark):
"""Add a benchmark to the suite."""
self.benchmarks.append(benchmark)
print(f"Added benchmark: {benchmark.name}")
def create_benchmark(
self,
name: str,
description: str = "",
domain: str = "general",
passing_score: float = 70.0
) -> Benchmark:
"""
Create a new benchmark and add to suite.
Args:
name: Benchmark name
description: Benchmark description
domain: Domain/topic
passing_score: Passing score percentage
Returns:
Created benchmark
"""
benchmark = Benchmark(
name=name,
description=description,
domain=domain,
passing_score=passing_score
)
self.add_benchmark(benchmark)
return benchmark
def get_benchmark(self, name: str) -> Optional[Benchmark]:
"""Get a benchmark by name."""
for benchmark in self.benchmarks:
if benchmark.name == name:
return benchmark
return None
def remove_benchmark(self, benchmark_name: str):
"""Remove a benchmark by name."""
self.benchmarks = [b for b in self.benchmarks if b.name != benchmark_name]
def list_benchmarks(self) -> List[str]:
"""Get list of benchmark names."""
return [b.name for b in self.benchmarks]
def get_statistics(self) -> Dict[str, Any]:
"""Get suite-wide statistics."""
total_questions = sum(len(b.questions) for b in self.benchmarks)
stats = {
'num_benchmarks': len(self.benchmarks),
'total_questions': total_questions,
'benchmarks': []
}
for benchmark in self.benchmarks:
stats['benchmarks'].append({
'name': benchmark.name,
'num_questions': len(benchmark.questions),
'domain': benchmark.domain,
'passing_score': benchmark.passing_score
})
return stats
def to_dict(self) -> Dict[str, Any]:
"""Convert suite to dictionary."""
return {
'name': self.name,
'description': self.description,
'num_benchmarks': len(self.benchmarks),
'benchmarks': [b.to_dict() for b in self.benchmarks],
'metadata': self.metadata,
'statistics': self.get_statistics()
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'BenchmarkSuite':
"""Create suite from dictionary."""
suite = cls(name=data.get('name', 'Default Suite'))
suite.description = data.get('description', '')
suite.metadata = data.get('metadata', {})
for benchmark_data in data.get('benchmarks', []):
benchmark = Benchmark.from_dict(benchmark_data)
suite.add_benchmark(benchmark)
return suite
def save(self, filepath: str):
"""Save suite to JSON file."""
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(self.to_dict(), f, indent=2, ensure_ascii=False)
print(f"Benchmark suite saved to: {filepath}")
@classmethod
def load(cls, filepath: str) -> 'BenchmarkSuite':
"""Load suite from JSON file."""
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
return cls.from_dict(data)
class InteractiveBenchmarkBuilder:
"""
Interactive builder for creating benchmarks through UI/CLI.
"""
def __init__(self):
"""Initialize builder."""
self.current_benchmark: Optional[Benchmark] = None
self.current_suite: Optional[BenchmarkSuite] = None
def create_benchmark(
self,
name: str,
description: str = "",
domain: str = "general"
) -> Benchmark:
"""
Create a new benchmark.
Args:
name: Benchmark name
description: Description
domain: Domain/topic
Returns:
Created benchmark
"""
self.current_benchmark = Benchmark(
name=name,
description=description,
domain=domain
)
return self.current_benchmark
def add_question_interactive(
self,
question: str,
answer: str,
category: Optional[str] = None,
difficulty: Optional[str] = None
) -> bool:
"""
Add question to current benchmark.
Args:
question: Question text
answer: Answer text
category: Category
difficulty: Difficulty level
Returns:
Success status
"""
if not self.current_benchmark:
print("No active benchmark. Create one first.")
return False
self.current_benchmark.add_question(
question=question,
answer=answer,
category=category,
difficulty=difficulty
)
return True
def preview_benchmark(self) -> str:
"""Preview current benchmark."""
if not self.current_benchmark:
return "No active benchmark"
stats = self.current_benchmark.get_statistics()
preview = f"""
Benchmark: {self.current_benchmark.name}
Description: {self.current_benchmark.description}
Domain: {self.current_benchmark.domain}
Total Questions: {stats['total_questions']}
Categories:
"""
for cat, count in stats['categories'].items():
preview += f" - {cat}: {count} questions\n"
return preview
def finalize_benchmark(self, filepath: Optional[str] = None) -> Benchmark:
"""
Finalize and optionally save benchmark.
Args:
filepath: Optional save path
Returns:
Finalized benchmark
"""
if not self.current_benchmark:
raise ValueError("No active benchmark to finalize")
issues = self.current_benchmark.validate()
if issues:
print("Validation warnings:")
for issue in issues:
print(f" - {issue}")
if filepath:
self.current_benchmark.save(filepath)
benchmark = self.current_benchmark
self.current_benchmark = None
return benchmark