Spaces:
Runtime error
Runtime error
Deploy LaunchLLM - Production AI Training Platform
Browse files- .gitignore +1 -0
- README.md +2 -2
- runpod_client.py +262 -0
- runpod_manager.py +483 -0
.gitignore
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
__pycache__/
|
| 2 |
*.py[cod]
|
|
|
|
| 3 |
*.log
|
| 4 |
.secrets/
|
| 5 |
.gradio/
|
|
|
|
| 1 |
__pycache__/
|
| 2 |
*.py[cod]
|
| 3 |
+
*.pyc
|
| 4 |
*.log
|
| 5 |
.secrets/
|
| 6 |
.gradio/
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🚀
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
@@ -174,4 +174,4 @@ Start by clicking the **Environment** tab above and adding your HuggingFace toke
|
|
| 174 |
|
| 175 |
---
|
| 176 |
|
| 177 |
-
**Built with ❤️ for domain experts who want custom AI without the complexity**
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 174 |
|
| 175 |
---
|
| 176 |
|
| 177 |
+
**Built with ❤️ for domain experts who want custom AI without the complexity**
|
runpod_client.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
RunPod Client - Low-level GraphQL API client for RunPod
|
| 3 |
+
|
| 4 |
+
Provides direct access to RunPod's GraphQL API for pod management.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import requests
|
| 9 |
+
from typing import Optional, List, Dict
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@dataclass
|
| 14 |
+
class PodInfo:
|
| 15 |
+
"""Information about a RunPod pod"""
|
| 16 |
+
id: str
|
| 17 |
+
name: str
|
| 18 |
+
status: str
|
| 19 |
+
gpu_type: str
|
| 20 |
+
gpu_count: int
|
| 21 |
+
cost_per_hour: float
|
| 22 |
+
runtime: Optional[Dict] = None
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class RunPodClient:
|
| 26 |
+
"""Low-level client for RunPod GraphQL API"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 29 |
+
self.api_key = api_key or os.getenv("RUNPOD_API_KEY")
|
| 30 |
+
if not self.api_key:
|
| 31 |
+
raise ValueError("RunPod API key required. Set RUNPOD_API_KEY environment variable.")
|
| 32 |
+
|
| 33 |
+
self.endpoint = "https://api.runpod.io/graphql"
|
| 34 |
+
self.headers = {
|
| 35 |
+
"Content-Type": "application/json",
|
| 36 |
+
"Authorization": f"Bearer {self.api_key}"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def _query(self, query: str, variables: Optional[Dict] = None) -> Dict:
|
| 40 |
+
"""Execute a GraphQL query"""
|
| 41 |
+
payload = {
|
| 42 |
+
"query": query,
|
| 43 |
+
"variables": variables or {}
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
response = requests.post(
|
| 47 |
+
self.endpoint,
|
| 48 |
+
json=payload,
|
| 49 |
+
headers=self.headers,
|
| 50 |
+
timeout=30
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
if response.status_code != 200:
|
| 54 |
+
raise Exception(f"GraphQL request failed: {response.status_code} {response.text}")
|
| 55 |
+
|
| 56 |
+
return response.json()
|
| 57 |
+
|
| 58 |
+
def list_pods(self) -> List[PodInfo]:
|
| 59 |
+
"""List all pods"""
|
| 60 |
+
query = """
|
| 61 |
+
query {
|
| 62 |
+
myself {
|
| 63 |
+
pods {
|
| 64 |
+
id
|
| 65 |
+
name
|
| 66 |
+
desiredStatus
|
| 67 |
+
runtime {
|
| 68 |
+
gpus {
|
| 69 |
+
id
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
machine {
|
| 73 |
+
podHostId
|
| 74 |
+
}
|
| 75 |
+
costPerHr
|
| 76 |
+
gpuCount
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
result = self._query(query)
|
| 83 |
+
|
| 84 |
+
if "errors" in result:
|
| 85 |
+
print(f"Error listing pods: {result['errors']}")
|
| 86 |
+
return []
|
| 87 |
+
|
| 88 |
+
pods_data = result.get("data", {}).get("myself", {}).get("pods", [])
|
| 89 |
+
pods = []
|
| 90 |
+
|
| 91 |
+
for pod_data in pods_data:
|
| 92 |
+
gpu_type = "GPU" # Generic GPU type since API doesn't provide type details
|
| 93 |
+
if pod_data.get("runtime") and pod_data["runtime"].get("gpus"):
|
| 94 |
+
gpu_id = pod_data["runtime"]["gpus"][0].get("id", "")
|
| 95 |
+
if gpu_id:
|
| 96 |
+
gpu_type = f"GPU-{gpu_id[:8]}" # Use shortened GPU ID
|
| 97 |
+
|
| 98 |
+
pods.append(PodInfo(
|
| 99 |
+
id=pod_data["id"],
|
| 100 |
+
name=pod_data["name"],
|
| 101 |
+
status=pod_data.get("desiredStatus", "unknown"),
|
| 102 |
+
gpu_type=gpu_type,
|
| 103 |
+
gpu_count=pod_data.get("gpuCount", 0),
|
| 104 |
+
cost_per_hour=pod_data.get("costPerHr", 0.0),
|
| 105 |
+
runtime=pod_data.get("runtime")
|
| 106 |
+
))
|
| 107 |
+
|
| 108 |
+
return pods
|
| 109 |
+
|
| 110 |
+
def create_pod(
|
| 111 |
+
self,
|
| 112 |
+
name: str,
|
| 113 |
+
image_name: str,
|
| 114 |
+
gpu_type_id: str,
|
| 115 |
+
gpu_count: int = 1,
|
| 116 |
+
volume_in_gb: int = 100,
|
| 117 |
+
container_disk_in_gb: int = 50,
|
| 118 |
+
ports: str = "8888/http"
|
| 119 |
+
) -> Optional[str]:
|
| 120 |
+
"""Create a new pod"""
|
| 121 |
+
query = """
|
| 122 |
+
mutation($input: PodFindAndDeployOnDemandInput!) {
|
| 123 |
+
podFindAndDeployOnDemand(input: $input) {
|
| 124 |
+
id
|
| 125 |
+
name
|
| 126 |
+
desiredStatus
|
| 127 |
+
}
|
| 128 |
+
}
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
variables = {
|
| 132 |
+
"input": {
|
| 133 |
+
"name": name,
|
| 134 |
+
"imageName": image_name,
|
| 135 |
+
"gpuTypeId": gpu_type_id,
|
| 136 |
+
"gpuCount": gpu_count,
|
| 137 |
+
"volumeInGb": volume_in_gb,
|
| 138 |
+
"containerDiskInGb": container_disk_in_gb,
|
| 139 |
+
"ports": ports,
|
| 140 |
+
"cloudType": "ALL"
|
| 141 |
+
}
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
result = self._query(query, variables)
|
| 145 |
+
|
| 146 |
+
if "errors" in result:
|
| 147 |
+
print(f"Error creating pod: {result['errors']}")
|
| 148 |
+
return None
|
| 149 |
+
|
| 150 |
+
pod_data = result.get("data", {}).get("podFindAndDeployOnDemand")
|
| 151 |
+
if pod_data:
|
| 152 |
+
return pod_data["id"]
|
| 153 |
+
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
def stop_pod(self, pod_id: str) -> bool:
|
| 157 |
+
"""Stop a running pod"""
|
| 158 |
+
query = """
|
| 159 |
+
mutation($input: PodStopInput!) {
|
| 160 |
+
podStop(input: $input) {
|
| 161 |
+
id
|
| 162 |
+
desiredStatus
|
| 163 |
+
}
|
| 164 |
+
}
|
| 165 |
+
"""
|
| 166 |
+
|
| 167 |
+
variables = {
|
| 168 |
+
"input": {
|
| 169 |
+
"podId": pod_id
|
| 170 |
+
}
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
result = self._query(query, variables)
|
| 174 |
+
|
| 175 |
+
if "errors" in result:
|
| 176 |
+
print(f"Error stopping pod: {result['errors']}")
|
| 177 |
+
return False
|
| 178 |
+
|
| 179 |
+
return True
|
| 180 |
+
|
| 181 |
+
def terminate_pod(self, pod_id: str) -> bool:
|
| 182 |
+
"""Terminate a pod"""
|
| 183 |
+
query = """
|
| 184 |
+
mutation($input: PodTerminateInput!) {
|
| 185 |
+
podTerminate(input: $input)
|
| 186 |
+
}
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
variables = {
|
| 190 |
+
"input": {
|
| 191 |
+
"podId": pod_id
|
| 192 |
+
}
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
result = self._query(query, variables)
|
| 196 |
+
|
| 197 |
+
if "errors" in result:
|
| 198 |
+
print(f"Error terminating pod: {result['errors']}")
|
| 199 |
+
return False
|
| 200 |
+
|
| 201 |
+
return True
|
| 202 |
+
|
| 203 |
+
def get_gpu_types(self) -> List[Dict]:
|
| 204 |
+
"""Get available GPU types"""
|
| 205 |
+
query = """
|
| 206 |
+
query {
|
| 207 |
+
gpuTypes {
|
| 208 |
+
id
|
| 209 |
+
displayName
|
| 210 |
+
memoryInGb
|
| 211 |
+
secureCloud
|
| 212 |
+
communityCloud
|
| 213 |
+
}
|
| 214 |
+
}
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
result = self._query(query)
|
| 218 |
+
|
| 219 |
+
if "errors" in result:
|
| 220 |
+
print(f"Error getting GPU types: {result['errors']}")
|
| 221 |
+
return []
|
| 222 |
+
|
| 223 |
+
gpu_types = result.get("data", {}).get("gpuTypes", [])
|
| 224 |
+
return gpu_types
|
| 225 |
+
|
| 226 |
+
def get_pod_details(self, pod_id: str) -> Optional[Dict]:
|
| 227 |
+
"""Get detailed information about a specific pod"""
|
| 228 |
+
query = """
|
| 229 |
+
query($podId: String!) {
|
| 230 |
+
pod(input: {podId: $podId}) {
|
| 231 |
+
id
|
| 232 |
+
name
|
| 233 |
+
desiredStatus
|
| 234 |
+
runtime {
|
| 235 |
+
gpus {
|
| 236 |
+
id
|
| 237 |
+
}
|
| 238 |
+
ports {
|
| 239 |
+
ip
|
| 240 |
+
isIpPublic
|
| 241 |
+
privatePort
|
| 242 |
+
publicPort
|
| 243 |
+
type
|
| 244 |
+
}
|
| 245 |
+
}
|
| 246 |
+
machine {
|
| 247 |
+
podHostId
|
| 248 |
+
}
|
| 249 |
+
gpuCount
|
| 250 |
+
costPerHr
|
| 251 |
+
}
|
| 252 |
+
}
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
variables = {"podId": pod_id}
|
| 256 |
+
result = self._query(query, variables)
|
| 257 |
+
|
| 258 |
+
if "errors" in result:
|
| 259 |
+
print(f"Error getting pod details: {result['errors']}")
|
| 260 |
+
return None
|
| 261 |
+
|
| 262 |
+
return result.get("data", {}).get("pod")
|
runpod_manager.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
RunPod Manager - High-level management for RunPod instances
|
| 3 |
+
|
| 4 |
+
Provides higher-level functions for managing RunPod instances including
|
| 5 |
+
deployment, monitoring, and SSH access.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import paramiko
|
| 9 |
+
import time
|
| 10 |
+
from typing import Optional, Dict, List
|
| 11 |
+
from dataclasses import dataclass, field
|
| 12 |
+
from runpod_client import RunPodClient, PodInfo
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class DeploymentConfig:
|
| 17 |
+
"""Configuration for RunPod deployment."""
|
| 18 |
+
name: str = "aura-training-pod"
|
| 19 |
+
gpu_type: str = "NVIDIA A100 80GB PCIe"
|
| 20 |
+
gpu_count: int = 1
|
| 21 |
+
storage_gb: int = 100
|
| 22 |
+
image: str = "runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04"
|
| 23 |
+
ports: str = "8888/http,22/tcp,7860/http" # Jupyter, SSH, Gradio
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@dataclass
|
| 27 |
+
class TrainingConfig:
|
| 28 |
+
"""Configuration for model training on RunPod."""
|
| 29 |
+
model_name: str = "Qwen/Qwen2.5-7B-Instruct"
|
| 30 |
+
lora_rank: int = 8
|
| 31 |
+
learning_rate: float = 2e-4
|
| 32 |
+
num_epochs: int = 3
|
| 33 |
+
batch_size: int = 4
|
| 34 |
+
gradient_accumulation_steps: int = 4
|
| 35 |
+
use_4bit: bool = True
|
| 36 |
+
max_length: int = 2048
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class RunPodManager:
|
| 40 |
+
"""Manager for RunPod instances with deployment and monitoring"""
|
| 41 |
+
|
| 42 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 43 |
+
self.client = RunPodClient(api_key)
|
| 44 |
+
|
| 45 |
+
def deploy_training_pod(
|
| 46 |
+
self,
|
| 47 |
+
name: str,
|
| 48 |
+
gpu_type: str = "NVIDIA A100 80GB PCIe",
|
| 49 |
+
gpu_count: int = 1,
|
| 50 |
+
storage_gb: int = 100
|
| 51 |
+
) -> Optional[str]:
|
| 52 |
+
"""Deploy a pod configured for model training"""
|
| 53 |
+
|
| 54 |
+
# Use PyTorch image with CUDA support
|
| 55 |
+
image = "runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04"
|
| 56 |
+
|
| 57 |
+
print(f"Deploying training pod '{name}'...")
|
| 58 |
+
print(f" GPU: {gpu_type} x{gpu_count}")
|
| 59 |
+
print(f" Storage: {storage_gb}GB")
|
| 60 |
+
|
| 61 |
+
pod_id = self.client.create_pod(
|
| 62 |
+
name=name,
|
| 63 |
+
image_name=image,
|
| 64 |
+
gpu_type_id=gpu_type,
|
| 65 |
+
gpu_count=gpu_count,
|
| 66 |
+
volume_in_gb=storage_gb,
|
| 67 |
+
container_disk_in_gb=50,
|
| 68 |
+
ports="8888/http,22/tcp,7860/http" # Jupyter, SSH, Gradio
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
if pod_id:
|
| 72 |
+
print(f"Pod created: {pod_id}")
|
| 73 |
+
print("Waiting for pod to start...")
|
| 74 |
+
time.sleep(10) # Give it time to start
|
| 75 |
+
|
| 76 |
+
return pod_id
|
| 77 |
+
|
| 78 |
+
def get_pod_status(self, pod_id: str) -> Optional[Dict]:
|
| 79 |
+
"""Get current status of a pod"""
|
| 80 |
+
pods = self.client.list_pods()
|
| 81 |
+
|
| 82 |
+
for pod in pods:
|
| 83 |
+
if pod.id == pod_id:
|
| 84 |
+
return {
|
| 85 |
+
"id": pod.id,
|
| 86 |
+
"name": pod.name,
|
| 87 |
+
"status": pod.status,
|
| 88 |
+
"gpu_type": pod.gpu_type,
|
| 89 |
+
"cost_per_hour": pod.cost_per_hour
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
return None
|
| 93 |
+
|
| 94 |
+
def list_all_pods(self) -> List[PodInfo]:
|
| 95 |
+
"""List all pods"""
|
| 96 |
+
return self.client.list_pods()
|
| 97 |
+
|
| 98 |
+
def stop_pod(self, pod_id: str) -> bool:
|
| 99 |
+
"""Stop a running pod"""
|
| 100 |
+
print(f"Stopping pod {pod_id}...")
|
| 101 |
+
return self.client.stop_pod(pod_id)
|
| 102 |
+
|
| 103 |
+
def terminate_pod(self, pod_id: str) -> bool:
|
| 104 |
+
"""Terminate a pod"""
|
| 105 |
+
print(f"Terminating pod {pod_id}...")
|
| 106 |
+
return self.client.terminate_pod(pod_id)
|
| 107 |
+
|
| 108 |
+
def get_ssh_connection(
|
| 109 |
+
self,
|
| 110 |
+
pod_ip: str,
|
| 111 |
+
username: str = "root",
|
| 112 |
+
key_file: Optional[str] = None,
|
| 113 |
+
password: Optional[str] = None
|
| 114 |
+
) -> Optional[paramiko.SSHClient]:
|
| 115 |
+
"""Get SSH connection to a pod"""
|
| 116 |
+
|
| 117 |
+
ssh = paramiko.SSHClient()
|
| 118 |
+
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
if key_file:
|
| 122 |
+
ssh.connect(
|
| 123 |
+
pod_ip,
|
| 124 |
+
username=username,
|
| 125 |
+
key_filename=key_file,
|
| 126 |
+
timeout=10
|
| 127 |
+
)
|
| 128 |
+
elif password:
|
| 129 |
+
ssh.connect(
|
| 130 |
+
pod_ip,
|
| 131 |
+
username=username,
|
| 132 |
+
password=password,
|
| 133 |
+
timeout=10
|
| 134 |
+
)
|
| 135 |
+
else:
|
| 136 |
+
print("Either key_file or password must be provided")
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
return ssh
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"SSH connection failed: {e}")
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
def execute_command(
|
| 146 |
+
self,
|
| 147 |
+
ssh: paramiko.SSHClient,
|
| 148 |
+
command: str
|
| 149 |
+
) -> tuple[str, str]:
|
| 150 |
+
"""Execute a command via SSH"""
|
| 151 |
+
|
| 152 |
+
stdin, stdout, stderr = ssh.exec_command(command)
|
| 153 |
+
return stdout.read().decode(), stderr.read().decode()
|
| 154 |
+
|
| 155 |
+
def upload_file(
|
| 156 |
+
self,
|
| 157 |
+
ssh: paramiko.SSHClient,
|
| 158 |
+
local_path: str,
|
| 159 |
+
remote_path: str
|
| 160 |
+
) -> bool:
|
| 161 |
+
"""Upload a file to the pod"""
|
| 162 |
+
|
| 163 |
+
try:
|
| 164 |
+
sftp = ssh.open_sftp()
|
| 165 |
+
sftp.put(local_path, remote_path)
|
| 166 |
+
sftp.close()
|
| 167 |
+
return True
|
| 168 |
+
except Exception as e:
|
| 169 |
+
print(f"File upload failed: {e}")
|
| 170 |
+
return False
|
| 171 |
+
|
| 172 |
+
def download_file(
|
| 173 |
+
self,
|
| 174 |
+
ssh: paramiko.SSHClient,
|
| 175 |
+
remote_path: str,
|
| 176 |
+
local_path: str
|
| 177 |
+
) -> bool:
|
| 178 |
+
"""Download a file from the pod"""
|
| 179 |
+
|
| 180 |
+
try:
|
| 181 |
+
sftp = ssh.open_sftp()
|
| 182 |
+
sftp.get(remote_path, local_path)
|
| 183 |
+
sftp.close()
|
| 184 |
+
return True
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"File download failed: {e}")
|
| 187 |
+
return False
|
| 188 |
+
|
| 189 |
+
def setup_training_environment(
|
| 190 |
+
self,
|
| 191 |
+
ssh: paramiko.SSHClient,
|
| 192 |
+
requirements_file: Optional[str] = None
|
| 193 |
+
) -> bool:
|
| 194 |
+
"""Setup the training environment on a pod"""
|
| 195 |
+
|
| 196 |
+
print("Setting up training environment...")
|
| 197 |
+
|
| 198 |
+
# Update pip
|
| 199 |
+
print("Updating pip...")
|
| 200 |
+
stdout, stderr = self.execute_command(ssh, "pip install --upgrade pip")
|
| 201 |
+
|
| 202 |
+
if requirements_file:
|
| 203 |
+
# Upload requirements file
|
| 204 |
+
print("Uploading requirements...")
|
| 205 |
+
if not self.upload_file(ssh, requirements_file, "/tmp/requirements.txt"):
|
| 206 |
+
return False
|
| 207 |
+
|
| 208 |
+
# Install requirements
|
| 209 |
+
print("Installing requirements...")
|
| 210 |
+
stdout, stderr = self.execute_command(
|
| 211 |
+
ssh,
|
| 212 |
+
"pip install -r /tmp/requirements.txt"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if stderr and "error" in stderr.lower():
|
| 216 |
+
print(f"Installation errors: {stderr}")
|
| 217 |
+
return False
|
| 218 |
+
|
| 219 |
+
print("Environment setup complete!")
|
| 220 |
+
return True
|
| 221 |
+
|
| 222 |
+
def monitor_training(
|
| 223 |
+
self,
|
| 224 |
+
ssh: paramiko.SSHClient,
|
| 225 |
+
log_file: str = "/workspace/training.log",
|
| 226 |
+
interval: int = 30
|
| 227 |
+
):
|
| 228 |
+
"""Monitor training progress"""
|
| 229 |
+
|
| 230 |
+
print(f"Monitoring training log: {log_file}")
|
| 231 |
+
print(f"Checking every {interval} seconds...")
|
| 232 |
+
print("Press Ctrl+C to stop monitoring\n")
|
| 233 |
+
|
| 234 |
+
last_line_count = 0
|
| 235 |
+
|
| 236 |
+
try:
|
| 237 |
+
while True:
|
| 238 |
+
# Get log file content
|
| 239 |
+
stdout, stderr = self.execute_command(
|
| 240 |
+
ssh,
|
| 241 |
+
f"cat {log_file} 2>/dev/null || echo 'Log file not found'"
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
lines = stdout.strip().split('\n')
|
| 245 |
+
new_lines = lines[last_line_count:]
|
| 246 |
+
|
| 247 |
+
if new_lines and new_lines[0] != 'Log file not found':
|
| 248 |
+
for line in new_lines:
|
| 249 |
+
print(line)
|
| 250 |
+
last_line_count = len(lines)
|
| 251 |
+
|
| 252 |
+
time.sleep(interval)
|
| 253 |
+
|
| 254 |
+
except KeyboardInterrupt:
|
| 255 |
+
print("\nStopped monitoring")
|
| 256 |
+
|
| 257 |
+
def get_available_gpus(self) -> List[Dict]:
|
| 258 |
+
"""Get list of available GPU types"""
|
| 259 |
+
return self.client.get_gpu_types()
|
| 260 |
+
|
| 261 |
+
def estimate_cost(
|
| 262 |
+
self,
|
| 263 |
+
gpu_type: str,
|
| 264 |
+
gpu_count: int,
|
| 265 |
+
hours: float
|
| 266 |
+
) -> Optional[float]:
|
| 267 |
+
"""Estimate cost for a training job"""
|
| 268 |
+
|
| 269 |
+
pods = self.client.list_pods()
|
| 270 |
+
|
| 271 |
+
# Find cost per hour for this GPU type
|
| 272 |
+
for pod in pods:
|
| 273 |
+
if pod.gpu_type == gpu_type and pod.gpu_count == gpu_count:
|
| 274 |
+
total_cost = pod.cost_per_hour * hours
|
| 275 |
+
return total_cost
|
| 276 |
+
|
| 277 |
+
return None
|
| 278 |
+
|
| 279 |
+
def run_training_on_pod(
|
| 280 |
+
self,
|
| 281 |
+
pod_id: str,
|
| 282 |
+
training_data: List[Dict],
|
| 283 |
+
model_name: str,
|
| 284 |
+
lora_config: Dict,
|
| 285 |
+
training_config: Dict
|
| 286 |
+
) -> bool:
|
| 287 |
+
"""Run training on RunPod pod instead of locally"""
|
| 288 |
+
import json
|
| 289 |
+
import tempfile
|
| 290 |
+
|
| 291 |
+
print(f"Starting remote training on pod {pod_id}...")
|
| 292 |
+
|
| 293 |
+
# 1. Get pod details to find SSH info
|
| 294 |
+
pod_details = self.client.get_pod_details(pod_id)
|
| 295 |
+
if not pod_details:
|
| 296 |
+
print("Error: Could not get pod details")
|
| 297 |
+
return False
|
| 298 |
+
|
| 299 |
+
# Extract SSH connection info
|
| 300 |
+
runtime = pod_details.get("runtime")
|
| 301 |
+
if not runtime or not runtime.get("ports"):
|
| 302 |
+
print("Error: Pod runtime not available. Pod may still be starting.")
|
| 303 |
+
return False
|
| 304 |
+
|
| 305 |
+
# Find SSH port
|
| 306 |
+
ssh_port = None
|
| 307 |
+
ssh_ip = None
|
| 308 |
+
for port in runtime["ports"]:
|
| 309 |
+
if port.get("privatePort") == 22:
|
| 310 |
+
ssh_ip = port.get("ip")
|
| 311 |
+
ssh_port = port.get("publicPort")
|
| 312 |
+
break
|
| 313 |
+
|
| 314 |
+
if not ssh_ip or not ssh_port:
|
| 315 |
+
print("Error: SSH port not found in pod details")
|
| 316 |
+
return False
|
| 317 |
+
|
| 318 |
+
print(f"SSH Connection: {ssh_ip}:{ssh_port}")
|
| 319 |
+
|
| 320 |
+
# 2. Save training data to temp file
|
| 321 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
|
| 322 |
+
json.dump(training_data, f)
|
| 323 |
+
data_file = f.name
|
| 324 |
+
|
| 325 |
+
# 3. Create training script
|
| 326 |
+
training_script = f"""
|
| 327 |
+
import json
|
| 328 |
+
import sys
|
| 329 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 330 |
+
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
|
| 331 |
+
from datasets import Dataset
|
| 332 |
+
import torch
|
| 333 |
+
|
| 334 |
+
print("Loading training data...")
|
| 335 |
+
with open('/workspace/training_data.json', 'r') as f:
|
| 336 |
+
data = json.load(f)
|
| 337 |
+
|
| 338 |
+
print(f"Loaded {{len(data)}} training examples")
|
| 339 |
+
|
| 340 |
+
print("Loading model: {model_name}")
|
| 341 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 342 |
+
"{model_name}",
|
| 343 |
+
load_in_4bit=True,
|
| 344 |
+
device_map="auto",
|
| 345 |
+
torch_dtype=torch.float16
|
| 346 |
+
)
|
| 347 |
+
tokenizer = AutoTokenizer.from_pretrained("{model_name}")
|
| 348 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 349 |
+
|
| 350 |
+
print("Preparing model for training...")
|
| 351 |
+
model = prepare_model_for_kbit_training(model)
|
| 352 |
+
|
| 353 |
+
lora_config = LoraConfig(
|
| 354 |
+
r={lora_config.get('r', 16)},
|
| 355 |
+
lora_alpha={lora_config.get('lora_alpha', 32)},
|
| 356 |
+
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
|
| 357 |
+
lora_dropout=0.05,
|
| 358 |
+
bias="none",
|
| 359 |
+
task_type=TaskType.CAUSAL_LM
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
model = get_peft_model(model, lora_config)
|
| 363 |
+
model.print_trainable_parameters()
|
| 364 |
+
|
| 365 |
+
print("Preparing dataset...")
|
| 366 |
+
def format_data(example):
|
| 367 |
+
text = f"###Instruction: {{example['instruction']}}\\n###Response: {{example['output']}}"
|
| 368 |
+
return tokenizer(text, truncation=True, max_length=2048, padding="max_length")
|
| 369 |
+
|
| 370 |
+
dataset = Dataset.from_list(data)
|
| 371 |
+
dataset = dataset.map(format_data, batched=False)
|
| 372 |
+
|
| 373 |
+
training_args = TrainingArguments(
|
| 374 |
+
output_dir="/workspace/outputs",
|
| 375 |
+
num_train_epochs={training_config.get('num_epochs', 3)},
|
| 376 |
+
per_device_train_batch_size={training_config.get('batch_size', 1)},
|
| 377 |
+
gradient_accumulation_steps={training_config.get('gradient_accumulation_steps', 16)},
|
| 378 |
+
learning_rate={training_config.get('learning_rate', 2e-4)},
|
| 379 |
+
logging_steps=10,
|
| 380 |
+
save_steps=100,
|
| 381 |
+
save_total_limit=2,
|
| 382 |
+
fp16=True,
|
| 383 |
+
report_to="none"
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
print("Starting training...")
|
| 387 |
+
trainer = Trainer(
|
| 388 |
+
model=model,
|
| 389 |
+
args=training_args,
|
| 390 |
+
train_dataset=dataset
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
trainer.train()
|
| 394 |
+
|
| 395 |
+
print("Saving model...")
|
| 396 |
+
model.save_pretrained("/workspace/final_model")
|
| 397 |
+
tokenizer.save_pretrained("/workspace/final_model")
|
| 398 |
+
|
| 399 |
+
print("Training complete!")
|
| 400 |
+
"""
|
| 401 |
+
|
| 402 |
+
# Save script to temp file
|
| 403 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as f:
|
| 404 |
+
f.write(training_script)
|
| 405 |
+
script_file = f.name
|
| 406 |
+
|
| 407 |
+
print("Connecting to pod via SSH...")
|
| 408 |
+
|
| 409 |
+
# Get path to SSH key
|
| 410 |
+
import os
|
| 411 |
+
key_path = os.path.join(os.getcwd(), ".ssh", "runpod_key")
|
| 412 |
+
|
| 413 |
+
if not os.path.exists(key_path):
|
| 414 |
+
print(f"Error: SSH key not found at {key_path}")
|
| 415 |
+
print("Run: ssh-keygen -t ed25519 -f .ssh/runpod_key -N ''")
|
| 416 |
+
print("Then add the public key to RunPod: https://www.runpod.io/console/user/settings")
|
| 417 |
+
return False
|
| 418 |
+
|
| 419 |
+
# Get SSH connection (RunPod uses root user by default)
|
| 420 |
+
ssh = self.get_ssh_connection(
|
| 421 |
+
pod_ip=ssh_ip,
|
| 422 |
+
username="root",
|
| 423 |
+
password=None,
|
| 424 |
+
key_file=key_path
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if not ssh:
|
| 428 |
+
print("Error: Could not establish SSH connection")
|
| 429 |
+
print(f"Tried using key: {key_path}")
|
| 430 |
+
print("Verify the public key is added to RunPod: https://www.runpod.io/console/user/settings")
|
| 431 |
+
return False
|
| 432 |
+
|
| 433 |
+
try:
|
| 434 |
+
# Upload training data
|
| 435 |
+
print("Uploading training data...")
|
| 436 |
+
if not self.upload_file(ssh, data_file, "/workspace/training_data.json"):
|
| 437 |
+
return False
|
| 438 |
+
|
| 439 |
+
# Upload training script
|
| 440 |
+
print("Uploading training script...")
|
| 441 |
+
if not self.upload_file(ssh, script_file, "/workspace/train.py"):
|
| 442 |
+
return False
|
| 443 |
+
|
| 444 |
+
# Install required packages
|
| 445 |
+
print("Installing required packages...")
|
| 446 |
+
stdout, stderr = self.execute_command(
|
| 447 |
+
ssh,
|
| 448 |
+
"pip install transformers peft datasets accelerate bitsandbytes"
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Execute training
|
| 452 |
+
print("Starting training on pod...")
|
| 453 |
+
print("Training will run in the background on the pod.")
|
| 454 |
+
print("You can monitor progress by checking the pod's logs.")
|
| 455 |
+
|
| 456 |
+
# Run training in background with nohup
|
| 457 |
+
stdout, stderr = self.execute_command(
|
| 458 |
+
ssh,
|
| 459 |
+
"nohup python /workspace/train.py > /workspace/training.log 2>&1 &"
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
print("\nTraining initiated successfully!")
|
| 463 |
+
print("Training data uploaded to: /workspace/training_data.json")
|
| 464 |
+
print("Training script uploaded to: /workspace/train.py")
|
| 465 |
+
print("Training log available at: /workspace/training.log")
|
| 466 |
+
print("\nTo monitor progress, you can:")
|
| 467 |
+
print(f" 1. SSH to pod: ssh root@{ssh_ip} -p {ssh_port}")
|
| 468 |
+
print(" 2. View logs: tail -f /workspace/training.log")
|
| 469 |
+
|
| 470 |
+
return True
|
| 471 |
+
|
| 472 |
+
except Exception as e:
|
| 473 |
+
print(f"Error during remote training setup: {e}")
|
| 474 |
+
return False
|
| 475 |
+
finally:
|
| 476 |
+
ssh.close()
|
| 477 |
+
# Clean up temp files
|
| 478 |
+
import os
|
| 479 |
+
try:
|
| 480 |
+
os.unlink(data_file)
|
| 481 |
+
os.unlink(script_file)
|
| 482 |
+
except:
|
| 483 |
+
pass
|