""" Benchmark Module Provides benchmark creation and execution for model testing. """ from dataclasses import dataclass, field from typing import List, Dict, Optional, Any import json import time from pathlib import Path @dataclass class Benchmark: """ A single benchmark test. Attributes: name: Benchmark name description: Benchmark description questions: List of test questions metadata: Additional metadata """ name: str description: str = "" questions: List[Dict[str, Any]] = field(default_factory=list) metadata: Dict[str, Any] = field(default_factory=dict) created_at: Optional[str] = None domain: str = "general" difficulty: str = "mixed" passing_score: float = 70.0 def __post_init__(self): """Initialize timestamp if not provided.""" if self.created_at is None: self.created_at = time.strftime('%Y-%m-%d %H:%M:%S') def add_question( self, question: str, answer: str, category: Optional[str] = None, difficulty: Optional[str] = None, metadata: Optional[Dict] = None ): """ Add a question to the benchmark. Args: question: Question text answer: Expected answer category: Question category/topic difficulty: Difficulty level metadata: Additional metadata """ question_dict = { 'question': question, 'answer': answer, 'category': category or 'general', 'difficulty': difficulty or 'intermediate', 'metadata': metadata or {} } self.questions.append(question_dict) def get_questions_by_category(self, category: str) -> List[Dict]: """Get all questions in a category.""" return [q for q in self.questions if q.get('category') == category] def get_questions_by_difficulty(self, difficulty: str) -> List[Dict]: """Get all questions of a difficulty level.""" return [q for q in self.questions if q.get('difficulty') == difficulty] def to_dict(self) -> Dict[str, Any]: """Convert benchmark to dictionary.""" return { 'name': self.name, 'description': self.description, 'domain': self.domain, 'difficulty': self.difficulty, 'passing_score': self.passing_score, 'created_at': self.created_at, 'num_questions': len(self.questions), 'questions': self.questions, 'metadata': self.metadata } @classmethod def from_dict(cls, data: Dict[str, Any]) -> 'Benchmark': """Create benchmark from dictionary.""" return cls( name=data.get('name', 'Untitled'), description=data.get('description', ''), questions=data.get('questions', []), metadata=data.get('metadata', {}), created_at=data.get('created_at'), domain=data.get('domain', 'general'), difficulty=data.get('difficulty', 'mixed'), passing_score=data.get('passing_score', 70.0) ) def save(self, filepath: str): """Save benchmark to JSON file.""" Path(filepath).parent.mkdir(parents=True, exist_ok=True) with open(filepath, 'w', encoding='utf-8') as f: json.dump(self.to_dict(), f, indent=2, ensure_ascii=False) print(f"Benchmark saved to: {filepath}") @classmethod def load(cls, filepath: str) -> 'Benchmark': """Load benchmark from JSON file.""" with open(filepath, 'r', encoding='utf-8') as f: data = json.load(f) return cls.from_dict(data) class BenchmarkSuite: """ Collection of benchmarks for comprehensive testing. Features: - Multiple benchmark management - Batch execution - Aggregate scoring - Result tracking """ def __init__(self, name: str = "Default Suite"): """ Initialize benchmark suite. Args: name: Suite name """ self.name = name self.benchmarks: List[Benchmark] = [] self.results: List[Dict[str, Any]] = [] def add_benchmark(self, benchmark: Benchmark): """ Add a benchmark to the suite. Args: benchmark: Benchmark to add """ self.benchmarks.append(benchmark) print(f"Added benchmark: {benchmark.name}") def remove_benchmark(self, benchmark_name: str): """ Remove a benchmark by name. Args: benchmark_name: Name of benchmark to remove """ self.benchmarks = [b for b in self.benchmarks if b.name != benchmark_name] def get_benchmark(self, name: str) -> Optional[Benchmark]: """ Get a benchmark by name. Args: name: Benchmark name Returns: Benchmark if found, None otherwise """ for benchmark in self.benchmarks: if benchmark.name == name: return benchmark return None def run_benchmark( self, benchmark: Benchmark, model_evaluator: Any, max_questions: Optional[int] = None ) -> Dict[str, Any]: """ Run a single benchmark. Args: benchmark: Benchmark to run model_evaluator: Model evaluator instance max_questions: Maximum questions to test Returns: Benchmark results """ print(f"\nRunning benchmark: {benchmark.name}") print(f"Total questions: {len(benchmark.questions)}") questions = benchmark.questions[:max_questions] if max_questions else benchmark.questions # Convert to dataset format dataset = [] for q in questions: dataset.append({ 'instruction': q['question'], 'input': '', 'output': q['answer'] }) # Run evaluation start_time = time.time() eval_results = model_evaluator.evaluate_dataset(dataset) total_time = time.time() - start_time # Calculate score score = self._calculate_score(eval_results) # Compile results results = { 'benchmark_name': benchmark.name, 'num_questions': len(questions), 'score': score, 'passed': score >= benchmark.passing_score, 'passing_score': benchmark.passing_score, 'total_time': total_time, 'evaluation_results': eval_results, 'timestamp': time.strftime('%Y-%m-%d %H:%M:%S') } self.results.append(results) print(f"\n{'='*60}") print(f"Benchmark: {benchmark.name}") print(f"Score: {score:.2f}% (Passing: {benchmark.passing_score}%)") print(f"Status: {'✅ PASSED' if results['passed'] else '❌ FAILED'}") print(f"{'='*60}\n") return results def run_all_benchmarks( self, model_evaluator: Any, max_questions_per_benchmark: Optional[int] = None ) -> List[Dict[str, Any]]: """ Run all benchmarks in the suite. Args: model_evaluator: Model evaluator instance max_questions_per_benchmark: Max questions per benchmark Returns: List of all results """ print(f"\n{'='*60}") print(f"Running Benchmark Suite: {self.name}") print(f"Total Benchmarks: {len(self.benchmarks)}") print(f"{'='*60}\n") all_results = [] for benchmark in self.benchmarks: results = self.run_benchmark( benchmark, model_evaluator, max_questions_per_benchmark ) all_results.append(results) # Summary self._print_summary(all_results) return all_results def _calculate_score(self, eval_results: Dict[str, Any]) -> float: """ Calculate benchmark score from evaluation results. Args: eval_results: Evaluation results Returns: Score percentage """ metrics = eval_results.get('metrics', {}) # Use available metrics (prioritize accuracy, then BLEU, then ROUGE) if 'accuracy' in metrics: return metrics['accuracy'] elif 'bleu' in metrics: return metrics['bleu'] elif 'rouge_l_f1' in metrics: return metrics['rouge_l_f1'] else: # Fallback: simple similarity check examples = eval_results.get('examples', []) if not examples: return 0.0 matches = 0 for ex in examples: pred = ex.get('prediction', '').lower().strip() ref = ex.get('reference', '').lower().strip() if pred in ref or ref in pred: matches += 1 return (matches / len(examples)) * 100.0 def _print_summary(self, results: List[Dict[str, Any]]): """Print summary of all benchmark results.""" print(f"\n{'='*60}") print(f"BENCHMARK SUITE SUMMARY: {self.name}") print(f"{'='*60}") total_benchmarks = len(results) passed = sum(1 for r in results if r['passed']) print(f"\nOverall: {passed}/{total_benchmarks} benchmarks passed") print(f"\nIndividual Results:") for result in results: status = '✅ PASS' if result['passed'] else '❌ FAIL' print(f" {status} | {result['benchmark_name']:40s} | Score: {result['score']:6.2f}%") avg_score = sum(r['score'] for r in results) / len(results) if results else 0 print(f"\nAverage Score: {avg_score:.2f}%") print(f"{'='*60}\n") def save_results(self, filepath: str): """ Save suite results to JSON. Args: filepath: Output file path """ Path(filepath).parent.mkdir(parents=True, exist_ok=True) data = { 'suite_name': self.name, 'num_benchmarks': len(self.benchmarks), 'benchmark_names': [b.name for b in self.benchmarks], 'results': self.results, 'timestamp': time.strftime('%Y-%m-%d %H:%M:%S') } with open(filepath, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2, ensure_ascii=False) print(f"Suite results saved to: {filepath}") def to_dict(self) -> Dict[str, Any]: """Convert suite to dictionary.""" return { 'name': self.name, 'num_benchmarks': len(self.benchmarks), 'benchmarks': [b.to_dict() for b in self.benchmarks], 'results': self.results } @classmethod def from_dict(cls, data: Dict[str, Any]) -> 'BenchmarkSuite': """Create suite from dictionary.""" suite = cls(name=data.get('name', 'Default Suite')) for benchmark_data in data.get('benchmarks', []): benchmark = Benchmark.from_dict(benchmark_data) suite.add_benchmark(benchmark) suite.results = data.get('results', []) return suite