""" Gap Analyzer Module Analyzes model performance to identify knowledge gaps and weak areas. """ from typing import List, Dict, Optional, Any, Tuple import json from pathlib import Path from collections import defaultdict import statistics class GapAnalyzer: """ Analyzes evaluation results to identify knowledge gaps. Features: - Topic-level performance analysis - Trend tracking across evaluations - Weakness identification - Strength identification - Improvement recommendations """ def __init__(self): """Initialize gap analyzer.""" self.evaluation_history: List[Dict[str, Any]] = [] self.performance_by_category: Dict[str, List[float]] = defaultdict(list) self.gaps: List[Dict[str, Any]] = [] def add_evaluation_results(self, results: Dict[str, Any]): """ Add evaluation results for analysis. Args: results: Evaluation results dictionary """ self.evaluation_history.append(results) # Extract category performance if available if 'examples' in results: category_scores = defaultdict(list) for example in results['examples']: category = example.get('category', 'general') # Calculate score for this example prediction = example.get('prediction', '').lower() reference = example.get('reference', '').lower() # Simple scoring: 1 if similar, 0 otherwise score = 1.0 if self._calculate_similarity(prediction, reference) > 0.5 else 0.0 category_scores[category].append(score) # Store average scores by category for category, scores in category_scores.items(): avg_score = (sum(scores) / len(scores)) * 100 if scores else 0 self.performance_by_category[category].append(avg_score) def _calculate_similarity(self, text1: str, text2: str) -> float: """Calculate simple similarity between two texts.""" words1 = set(text1.split()) words2 = set(text2.split()) if not words1 or not words2: return 0.0 intersection = words1 & words2 union = words1 | words2 return len(intersection) / len(union) if union else 0.0 def analyze_gaps( self, weak_threshold: float = 60.0, strong_threshold: float = 85.0 ) -> List[Dict[str, Any]]: """ Analyze performance and identify gaps. Args: weak_threshold: Score below this is considered weak strong_threshold: Score above this is considered strong Returns: List of identified gaps with details """ gaps = [] # Analyze each category for category, scores in self.performance_by_category.items(): if not scores: continue avg_score = statistics.mean(scores) latest_score = scores[-1] if scores else 0 # Calculate trend trend = "stable" if len(scores) >= 2: recent_avg = statistics.mean(scores[-3:]) if len(scores) >= 3 else statistics.mean(scores[-2:]) older_avg = statistics.mean(scores[:-3]) if len(scores) >= 3 else scores[0] if recent_avg > older_avg + 5: trend = "improving" elif recent_avg < older_avg - 5: trend = "declining" # Classify performance level if avg_score < weak_threshold: level = "WEAK" priority = "HIGH" elif avg_score < strong_threshold: level = "MODERATE" priority = "MEDIUM" else: level = "STRONG" priority = "LOW" gap = { 'category': category, 'avg_score': avg_score, 'latest_score': latest_score, 'num_evaluations': len(scores), 'trend': trend, 'level': level, 'priority': priority, 'scores_history': scores } gaps.append(gap) # Sort by priority (weak areas first) priority_order = {'HIGH': 0, 'MEDIUM': 1, 'LOW': 2} gaps.sort(key=lambda x: (priority_order.get(x['priority'], 3), x['avg_score'])) self.gaps = gaps return gaps def get_weakest_topics(self, n: int = 5) -> List[Dict[str, Any]]: """ Get the N weakest topics. Args: n: Number of topics to return Returns: List of weakest topics """ if not self.gaps: self.analyze_gaps() weak_gaps = [g for g in self.gaps if g['level'] in ['WEAK', 'MODERATE']] return weak_gaps[:n] def get_strongest_topics(self, n: int = 5) -> List[Dict[str, Any]]: """ Get the N strongest topics. Args: n: Number of topics to return Returns: List of strongest topics """ if not self.gaps: self.analyze_gaps() strong_gaps = [g for g in self.gaps if g['level'] == 'STRONG'] return strong_gaps[:n] def get_declining_topics(self) -> List[Dict[str, Any]]: """Get topics with declining performance.""" if not self.gaps: self.analyze_gaps() return [g for g in self.gaps if g['trend'] == 'declining'] def get_improving_topics(self) -> List[Dict[str, Any]]: """Get topics with improving performance.""" if not self.gaps: self.analyze_gaps() return [g for g in self.gaps if g['trend'] == 'improving'] def generate_gap_report(self) -> str: """ Generate a human-readable gap analysis report. Returns: Formatted report string """ if not self.gaps: self.analyze_gaps() report = ["=" * 80] report.append("KNOWLEDGE GAP ANALYSIS REPORT") report.append("=" * 80) report.append("") # Overall summary weak_count = sum(1 for g in self.gaps if g['level'] == 'WEAK') moderate_count = sum(1 for g in self.gaps if g['level'] == 'MODERATE') strong_count = sum(1 for g in self.gaps if g['level'] == 'STRONG') report.append(f"Total Categories Analyzed: {len(self.gaps)}") report.append(f" - WEAK (needs immediate attention): {weak_count}") report.append(f" - MODERATE (needs improvement): {moderate_count}") report.append(f" - STRONG (performing well): {strong_count}") report.append("") # Weak areas (priority) weak_topics = [g for g in self.gaps if g['level'] == 'WEAK'] if weak_topics: report.append("🔴 WEAK AREAS (Priority Training Needed):") report.append("-" * 80) for gap in weak_topics: report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})") report.append("") # Moderate areas moderate_topics = [g for g in self.gaps if g['level'] == 'MODERATE'] if moderate_topics: report.append("🟡 MODERATE AREAS (Recommended Improvement):") report.append("-" * 80) for gap in moderate_topics[:5]: # Top 5 report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})") report.append("") # Strong areas strong_topics = [g for g in self.gaps if g['level'] == 'STRONG'] if strong_topics: report.append("🟢 STRONG AREAS (Excellent Performance):") report.append("-" * 80) for gap in strong_topics[:5]: # Top 5 report.append(f" • {gap['category']}: {gap['avg_score']:.1f}% (Trend: {gap['trend']})") report.append("") # Trends declining = self.get_declining_topics() improving = self.get_improving_topics() if declining: report.append("📉 DECLINING PERFORMANCE (Needs Attention):") report.append("-" * 80) for gap in declining: report.append(f" • {gap['category']}: {gap['avg_score']:.1f}%") report.append("") if improving: report.append("📈 IMPROVING PERFORMANCE (Keep It Up!):") report.append("-" * 80) for gap in improving: report.append(f" • {gap['category']}: {gap['avg_score']:.1f}%") report.append("") report.append("=" * 80) return "\n".join(report) def get_performance_summary(self) -> Dict[str, Any]: """ Get overall performance summary. Returns: Summary statistics """ if not self.gaps: self.analyze_gaps() all_scores = [g['avg_score'] for g in self.gaps] summary = { 'num_categories': len(self.gaps), 'overall_avg_score': statistics.mean(all_scores) if all_scores else 0, 'min_score': min(all_scores) if all_scores else 0, 'max_score': max(all_scores) if all_scores else 0, 'weak_count': sum(1 for g in self.gaps if g['level'] == 'WEAK'), 'moderate_count': sum(1 for g in self.gaps if g['level'] == 'MODERATE'), 'strong_count': sum(1 for g in self.gaps if g['level'] == 'STRONG'), 'declining_count': sum(1 for g in self.gaps if g['trend'] == 'declining'), 'improving_count': sum(1 for g in self.gaps if g['trend'] == 'improving') } return summary def export_gaps(self, filepath: str): """ Export gap analysis to JSON file. Args: filepath: Output file path """ if not self.gaps: self.analyze_gaps() Path(filepath).parent.mkdir(parents=True, exist_ok=True) data = { 'summary': self.get_performance_summary(), 'gaps': self.gaps, 'report': self.generate_gap_report() } with open(filepath, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2, ensure_ascii=False) print(f"Gap analysis exported to: {filepath}") def load_gaps(self, filepath: str): """ Load gap analysis from JSON file. Args: filepath: Input file path """ with open(filepath, 'r', encoding='utf-8') as f: data = json.load(f) self.gaps = data.get('gaps', []) # Reconstruct performance_by_category for gap in self.gaps: category = gap['category'] scores = gap.get('scores_history', []) self.performance_by_category[category] = scores def compare_evaluations( self, eval1: Dict[str, Any], eval2: Dict[str, Any] ) -> Dict[str, Any]: """ Compare two evaluation results. Args: eval1: First evaluation results eval2: Second evaluation results Returns: Comparison details """ comparison = { 'improvement': {}, 'decline': {}, 'stable': {} } # Extract metrics from both metrics1 = eval1.get('metrics', {}) metrics2 = eval2.get('metrics', {}) # Compare each metric for metric in set(metrics1.keys()) | set(metrics2.keys()): if metric in metrics1 and metric in metrics2: val1 = metrics1[metric] val2 = metrics2[metric] if isinstance(val1, (int, float)) and isinstance(val2, (int, float)): diff = val2 - val1 percent_change = (diff / val1 * 100) if val1 != 0 else 0 if diff > 1: # Improved comparison['improvement'][metric] = { 'old': val1, 'new': val2, 'change': diff, 'percent_change': percent_change } elif diff < -1: # Declined comparison['decline'][metric] = { 'old': val1, 'new': val2, 'change': diff, 'percent_change': percent_change } else: # Stable comparison['stable'][metric] = { 'old': val1, 'new': val2, 'change': diff } return comparison def get_category_details(self, category: str) -> Optional[Dict[str, Any]]: """ Get detailed analysis for a specific category. Args: category: Category name Returns: Category details or None if not found """ if not self.gaps: self.analyze_gaps() for gap in self.gaps: if gap['category'] == category: return gap return None