""" Intelligent Benchmark & Exam Scraper Scrapes the web to find domain-specific questions, scenarios, and test content. Automatically builds comprehensive benchmarks for any use case. """ import re import json import requests from typing import List, Dict, Optional from pathlib import Path import time from bs4 import BeautifulSoup from urllib.parse import quote_plus class IntelligentBenchmarkScraper: """ Scrapes web sources to build domain-specific benchmarks and exams. Features: - Web search for relevant content - Multi-source scraping (Wikipedia, educational sites, forums, documentation) - Question extraction and generation - Quality scoring and filtering - Benchmark formatting """ def __init__(self, api_key: Optional[str] = None): """ Initialize scraper. Args: api_key: OpenAI/Anthropic key for question generation from scraped content """ self.api_key = api_key self.session = requests.Session() self.session.headers.update({ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' }) def search_web(self, query: str, num_results: int = 10) -> List[Dict]: """ Search the web for relevant content using DuckDuckGo (no API key needed). Args: query: Search query num_results: Number of results to return Returns: List of search results with title, URL, snippet """ results = [] try: # Use DuckDuckGo HTML search (no API required) search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}" response = self.session.get(search_url, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Parse results for result_div in soup.find_all('div', class_='result')[:num_results]: title_elem = result_div.find('a', class_='result__a') snippet_elem = result_div.find('a', class_='result__snippet') if title_elem and snippet_elem: results.append({ 'title': title_elem.get_text(strip=True), 'url': title_elem['href'], 'snippet': snippet_elem.get_text(strip=True) }) except Exception as e: print(f"Search error: {e}") # Fallback: provide some generic sources results = self._get_fallback_sources(query) return results def _get_fallback_sources(self, query: str) -> List[Dict]: """Provide fallback educational sources when search fails.""" domain_keywords = query.lower() sources = [] # Wikipedia wiki_topic = query.replace(' ', '_') sources.append({ 'title': f"Wikipedia: {query}", 'url': f"https://en.wikipedia.org/wiki/{wiki_topic}", 'snippet': f"Comprehensive overview of {query}" }) # Add domain-specific sources if 'financial' in domain_keywords or 'finance' in domain_keywords: sources.extend([ { 'title': "Investopedia: Financial Certification Exams", 'url': "https://www.investopedia.com/", 'snippet': "Financial education and exam prep" }, { 'title': "CFP Board Practice Questions", 'url': "https://www.cfp.net/", 'snippet': "CFP certification resources" } ]) elif 'medical' in domain_keywords or 'health' in domain_keywords: sources.extend([ { 'title': "NCBI Medical Resources", 'url': "https://www.ncbi.nlm.nih.gov/", 'snippet': "Medical knowledge base" }, { 'title': "MedlinePlus Health Topics", 'url': "https://medlineplus.gov/", 'snippet': "Consumer health information" } ]) elif 'legal' in domain_keywords or 'law' in domain_keywords: sources.extend([ { 'title': "Cornell Legal Information Institute", 'url': "https://www.law.cornell.edu/", 'snippet': "Free legal resources and case law" } ]) return sources def scrape_content(self, url: str) -> str: """ Scrape text content from a URL. Args: url: URL to scrape Returns: Extracted text content """ try: response = self.session.get(url, timeout=15) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Remove script and style elements for script in soup(['script', 'style', 'header', 'footer', 'nav']): script.decompose() # Get text text = soup.get_text() # Clean up lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) # Limit size return text[:10000] # Max 10K chars per page except Exception as e: print(f"Scraping error for {url}: {e}") return "" def extract_questions_from_text(self, text: str, max_questions: int = 20) -> List[Dict]: """ Extract questions from text using pattern matching. Args: text: Text content to analyze max_questions: Maximum questions to extract Returns: List of question dicts """ questions = [] # Pattern 1: Questions with answers # Example: "What is X? Y is..." qa_pattern = r'(?:^|\n)([^.!?]*\?)\s*([^.!?]+[.!?])' matches = re.findall(qa_pattern, text) for question, answer in matches[:max_questions//2]: question = question.strip() answer = answer.strip() if len(question) > 20 and len(answer) > 20: questions.append({ 'question': question, 'answer': answer, 'type': 'extracted' }) # Pattern 2: Numbered/bulleted questions numbered_pattern = r'(?:^|\n)\s*(?:\d+[\.\)]\s*|[•\-\*]\s*)([^.!?]*\?)' numbered_matches = re.findall(numbered_pattern, text) for question in numbered_matches[:max_questions//2]: question = question.strip() if len(question) > 20: questions.append({ 'question': question, 'answer': "", # Will be generated later 'type': 'extracted_no_answer' }) return questions[:max_questions] def generate_questions_from_content(self, content: str, domain: str, num_questions: int = 10) -> List[Dict]: """ Generate questions from content using LLM. Args: content: Source content domain: Domain/topic num_questions: Number of questions to generate Returns: List of generated questions """ if not self.api_key: # Fallback: use simple templates return self._generate_template_questions(content, domain, num_questions) try: # Try OpenAI first if self.api_key.startswith('sk-'): from openai import OpenAI client = OpenAI(api_key=self.api_key) prompt = f"""Based on the following content about {domain}, generate {num_questions} test questions with answers. Content: {content[:3000]} Format each question as JSON: {{"question": "...", "answer": "...", "difficulty": "beginner|intermediate|advanced"}} Return a JSON array of questions.""" response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are an expert test creator."}, {"role": "user", "content": prompt} ], temperature=0.7 ) # Parse JSON response content_text = response.choices[0].message.content json_match = re.search(r'\[.*\]', content_text, re.DOTALL) if json_match: questions = json.loads(json_match.group()) return questions # Try Anthropic elif self.api_key.startswith('sk-ant-'): from anthropic import Anthropic client = Anthropic(api_key=self.api_key) prompt = f"""Based on the following content about {domain}, generate {num_questions} test questions with answers. Content: {content[:3000]} Format each question as JSON: {{"question": "...", "answer": "...", "difficulty": "beginner|intermediate|advanced"}} Return a JSON array of questions.""" response = client.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=2000, messages=[ {"role": "user", "content": prompt} ] ) # Parse JSON response content_text = response.content[0].text json_match = re.search(r'\[.*\]', content_text, re.DOTALL) if json_match: questions = json.loads(json_match.group()) return questions except Exception as e: print(f"LLM generation error: {e}") # Fallback return self._generate_template_questions(content, domain, num_questions) def _generate_template_questions(self, content: str, domain: str, num_questions: int) -> List[Dict]: """Generate basic questions using templates when no API available.""" questions = [] # Extract key terms (simple approach) words = content.split() unique_words = list(set([w for w in words if len(w) > 5]))[:num_questions] templates = [ ("What is {term}?", "answer_placeholder"), ("Explain the concept of {term}.", "answer_placeholder"), ("How does {term} work in the context of {domain}?", "answer_placeholder"), ("What are the key aspects of {term}?", "answer_placeholder"), ] for i, term in enumerate(unique_words[:num_questions]): template = templates[i % len(templates)] questions.append({ 'question': template[0].format(term=term, domain=domain), 'answer': f"This question requires domain expertise in {domain} regarding {term}.", 'difficulty': 'intermediate', 'type': 'template_generated' }) return questions def build_benchmark( self, domain: str, num_questions: int = 50, use_llm: bool = True ) -> Dict: """ Build a comprehensive benchmark for a domain. Args: domain: Domain/topic (e.g., "financial planning", "medical diagnostics") num_questions: Target number of questions use_llm: Whether to use LLM for question generation Returns: Benchmark dict with questions """ print(f"Building benchmark for: {domain}") print(f"Target questions: {num_questions}") all_questions = [] # Step 1: Search for relevant content print("\n[1/4] Searching web for content...") search_queries = [ f"{domain} practice questions", f"{domain} exam questions", f"{domain} test scenarios", f"{domain} certification study guide" ] all_sources = [] for query in search_queries: sources = self.search_web(query, num_results=5) all_sources.extend(sources) time.sleep(1) # Rate limiting print(f"Found {len(all_sources)} sources") # Step 2: Scrape content from sources print("\n[2/4] Scraping content from sources...") scraped_content = [] for i, source in enumerate(all_sources[:10]): # Limit to 10 sources print(f" Scraping {i+1}/10: {source['title'][:50]}...") content = self.scrape_content(source['url']) if content: scraped_content.append({ 'url': source['url'], 'title': source['title'], 'content': content }) time.sleep(1) # Be polite print(f"Successfully scraped {len(scraped_content)} pages") # Step 3: Extract existing questions print("\n[3/4] Extracting questions from content...") for item in scraped_content: extracted = self.extract_questions_from_text(item['content']) for q in extracted: q['source'] = item['url'] q['source_title'] = item['title'] all_questions.extend(extracted) print(f"Extracted {len(all_questions)} questions from sources") # Step 4: Generate additional questions if needed if use_llm and len(all_questions) < num_questions: print("\n[4/4] Generating additional questions using LLM...") remaining = num_questions - len(all_questions) # Use best content for generation best_content = max(scraped_content, key=lambda x: len(x['content']))['content'] if scraped_content else "" if best_content: generated = self.generate_questions_from_content( best_content, domain, num_questions=remaining ) all_questions.extend(generated) print(f"Generated {len(generated)} additional questions") # Build final benchmark benchmark = { 'name': f"{domain.title()} Benchmark", 'domain': domain, 'description': f"Automatically generated benchmark for {domain} with {len(all_questions)} questions", 'created_at': time.strftime('%Y-%m-%d %H:%M:%S'), 'num_questions': len(all_questions), 'sources': [s['url'] for s in scraped_content], 'questions': all_questions[:num_questions] } print(f"\n[OK] Benchmark created with {len(benchmark['questions'])} questions") return benchmark def save_benchmark(self, benchmark: Dict, filepath: str): """Save benchmark to JSON file.""" Path(filepath).parent.mkdir(parents=True, exist_ok=True) with open(filepath, 'w', encoding='utf-8') as f: json.dump(benchmark, f, indent=2, ensure_ascii=False) print(f"Saved benchmark to: {filepath}") def create_scraped_benchmark(domain: str, num_questions: int = 50, api_key: Optional[str] = None) -> str: """ Helper function to create a benchmark from web scraping. Args: domain: Domain/topic num_questions: Number of questions api_key: Optional API key for LLM generation Returns: Status message """ scraper = IntelligentBenchmarkScraper(api_key=api_key) benchmark = scraper.build_benchmark( domain=domain, num_questions=num_questions, use_llm=bool(api_key) ) # Save filename = domain.lower().replace(' ', '_') filepath = f"benchmarks/{filename}_benchmark.json" scraper.save_benchmark(benchmark, filepath) return filepath, benchmark if __name__ == "__main__": # Test import sys domain = sys.argv[1] if len(sys.argv) > 1 else "financial planning" scraper = IntelligentBenchmarkScraper() benchmark = scraper.build_benchmark(domain, num_questions=20, use_llm=False) print("\nSample questions:") for i, q in enumerate(benchmark['questions'][:3], 1): print(f"\n{i}. {q['question']}") if q.get('answer'): print(f" A: {q['answer'][:100]}...")