Spaces:
Sleeping
Sleeping
File size: 12,695 Bytes
cd8c2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import json
import numpy as np
from typing import Dict, List, Any, Optional
from datetime import datetime
from .knowledge_tracing import KnowledgeTracer, ItemResponse, SkillMastery
from .rag.knowledge_base import KnowledgeBase
from .rag.retriever import KnowledgeRetriever
from .rag.rag_prompts import RAGEnhancedPrompts
from .inference import run_prompt
class AdaptiveTutor:
"""RAG-enhanced adaptive tutoring system with knowledge tracing."""
def __init__(self, user_id: str = "default"):
self.user_id = user_id
self.knowledge_tracer = KnowledgeTracer()
self.knowledge_base = KnowledgeBase()
self.retriever = KnowledgeRetriever(self.knowledge_base)
self.rag_prompts = RAGEnhancedPrompts()
# Session tracking
self.session_start = datetime.now()
self.session_responses = []
def process_student_response(self, item_id: str, skill: str, question: str,
user_answer: str, correct_answer: str,
response_time: float, hints_used: int = 0) -> Dict[str, Any]:
"""Process a student response and update knowledge tracing."""
# Determine correctness
is_correct = self._evaluate_answer(user_answer, correct_answer)
# Create item response
difficulty = self._estimate_item_difficulty(skill, question)
response = ItemResponse(
item_id=item_id,
skill=skill,
correct=is_correct,
response_time=response_time,
hints_used=hints_used,
difficulty=difficulty,
timestamp=datetime.now()
)
# Update knowledge tracing
new_theta = self.knowledge_tracer.update_mastery(response)
mastery_prob = self.knowledge_tracer.get_mastery_probability(skill)
# Generate RAG-enhanced explanation
explanation = self.generate_rag_explanation(question, user_answer, correct_answer)
# Track session
self.session_responses.append(response)
return {
"correct": is_correct,
"mastery_theta": new_theta,
"mastery_probability": mastery_prob,
"explanation": explanation,
"next_recommendations": self.get_next_items(skill)
}
def generate_rag_explanation(self, question: str, user_answer: str,
correct_answer: str) -> Dict[str, Any]:
"""Generate explanation with knowledge grounding."""
# Retrieve relevant knowledge
knowledge_context = self.retriever.get_explanation_with_citations(
question, user_answer, correct_answer
)
# Prepare input for RAG-enhanced prompt
prompt_input = {
"question": question,
"user_answer": user_answer,
"solution": correct_answer,
"facts": knowledge_context["facts"],
"sources": knowledge_context["sources"]
}
# Generate explanation using RAG prompt
try:
explanation = run_prompt(
"item_explanation_with_rag",
prompt_input,
model_id="Qwen/Qwen3-7B-Instruct"
)
# Add citations from knowledge base
explanation["knowledge_citations"] = knowledge_context["citations"]
explanation["fact_sources"] = knowledge_context["facts"]
except Exception as e:
# Fallback to basic explanation
explanation = {
"hint": "Review the problem steps carefully.",
"guided": "Compare your answer with the correct solution.",
"full": f"The correct answer is {correct_answer}. Please review the method.",
"knowledge_citations": [],
"fact_sources": []
}
return explanation
def generate_adaptive_hints(self, question: str, hint_level: int = 1) -> List[str]:
"""Generate contextual hints using RAG."""
return self.retriever.get_contextual_hints(question, hint_level)
def generate_adaptive_question(self, skill: str, difficulty: Optional[float] = None) -> Dict[str, Any]:
"""Generate an adaptive question based on current mastery."""
if difficulty is None:
mastery = self.knowledge_tracer.get_mastery_probability(skill)
difficulty = 1.0 - mastery # Inverse relationship
# Retrieve relevant knowledge for the skill
knowledge_items = self.knowledge_base.retrieve_by_skill(skill, limit=3)
# Prepare input for question generation
prompt_input = {
"skill": skill,
"mastery_level": 1.0 - difficulty,
"knowledge_content": [item["content"] for item in knowledge_items],
"difficulty": difficulty
}
try:
question = run_prompt(
"adaptive_question_generation",
prompt_input,
model_id="Qwen/Qwen3-7B-Instruct"
)
# Add knowledge citations
question["knowledge_sources"] = [item["id"] for item in knowledge_items]
except Exception as e:
# Fallback question template
question = {
"question": f"Practice problem for {skill} at difficulty {difficulty:.2f}",
"answer": "Answer to be determined",
"explanation": "Explanation to be provided",
"difficulty": difficulty,
"skill": skill,
"knowledge_sources": []
}
return question
def get_next_items(self, current_skill: str = None, max_items: int = 5) -> List[Dict[str, Any]]:
"""Get next item recommendations using entropy-based scheduling."""
# Generate candidate items
candidates = []
skills = ["algebra_simplification", "linear_equations", "fraction_operations", "ratios"]
for skill in skills:
for i in range(3): # 3 items per skill
mastery = self.knowledge_tracer.get_mastery_probability(skill)
difficulty = 1.0 - mastery + np.random.normal(0, 0.1) # Add noise
candidates.append({
"item_id": f"{skill}_{i}",
"skill": skill,
"difficulty": np.clip(difficulty, 0.1, 0.9),
"type": "practice"
})
# Get recommendations from knowledge tracer
recommendations = self.knowledge_tracer.get_next_item_recommendations(
candidates, max_items
)
# Add adaptive questions for top recommendations
for rec in recommendations:
if rec["type"] == "practice":
adaptive_q = self.generate_adaptive_question(rec["skill"], rec["difficulty"])
rec.update(adaptive_q)
return recommendations
def evaluate_mastery_with_irt(self, skill: str) -> Dict[str, Any]:
"""Evaluate mastery using IRT parameters."""
# Get recent responses for the skill
skill_responses = [r for r in self.session_responses if r.skill == skill]
if not skill_responses:
# Get from database if no session responses
mastery_prob = self.knowledge_tracer.get_mastery_probability(skill)
return {
"theta": 0.0,
"sem": 1.0,
"mastery": mastery_prob,
"confidence_interval": [-1.96, 1.96]
}
# Prepare input for IRT evaluation
responses_data = []
for r in skill_responses[-10:]: # Last 10 responses
responses_data.append({
"correct": r.correct,
"difficulty": r.difficulty,
"response_time": r.response_time,
"hints": r.hints_used
})
prompt_input = {
"skill": skill,
"responses": responses_data
}
try:
irt_result = run_prompt(
"mastery_diagnostic_with_irt",
prompt_input,
model_id="Qwen/Qwen3-7B-Instruct"
)
return irt_result
except:
# Fallback to knowledge tracer estimates
if skill in self.knowledge_tracer.skill_masteries:
mastery = self.knowledge_tracer.skill_masteries[skill]
return {
"theta": mastery.theta,
"sem": mastery.sem,
"mastery": self.knowledge_tracer.get_mastery_probability(skill),
"confidence_interval": [
mastery.theta - 1.96 * mastery.sem,
mastery.theta + 1.96 * mastery.sem
]
}
else:
return {
"theta": 0.0,
"sem": 1.0,
"mastery": 0.5,
"confidence_interval": [-1.96, 1.96]
}
def get_research_metrics(self) -> Dict[str, Any]:
"""Get comprehensive research metrics for evaluation."""
# Basic session metrics
session_duration = (datetime.now() - self.session_start).total_seconds()
total_responses = len(self.session_responses)
correct_responses = sum(1 for r in self.session_responses if r.correct)
# Get detailed metrics from knowledge tracer
tracer_metrics = self.knowledge_tracer.get_research_metrics()
# Calculate additional session-based metrics
if total_responses > 0:
session_accuracy = correct_responses / total_responses
avg_session_time = np.mean([r.response_time for r in self.session_responses])
hints_per_response = np.mean([r.hints_used for r in self.session_responses])
else:
session_accuracy = 0.0
avg_session_time = 0.0
hints_per_response = 0.0
# Learning gain calculation
if len(self.session_responses) >= 10:
early_accuracy = sum(1 for r in self.session_responses[:5] if r.correct) / 5
late_accuracy = sum(1 for r in self.session_responses[-5:] if r.correct) / 5
session_learning_gain = late_accuracy - early_accuracy
else:
session_learning_gain = 0.0
# Combine all metrics
research_metrics = {
"session_metrics": {
"duration_seconds": session_duration,
"total_responses": total_responses,
"accuracy": session_accuracy,
"avg_response_time": avg_session_time,
"hints_per_response": hints_per_response,
"learning_gain": session_learning_gain
},
"cumulative_metrics": tracer_metrics,
"knowledge_tracing": {
"tracked_skills": len(self.knowledge_tracer.skill_masteries),
"skill_masteries": {
skill: {
"theta": mastery.theta,
"mastery_prob": self.knowledge_tracer.get_mastery_probability(skill),
"practice_count": mastery.practice_count
}
for skill, mastery in self.knowledge_tracer.skill_masteries.items()
}
}
}
return research_metrics
def _evaluate_answer(self, user_answer: str, correct_answer: str) -> bool:
"""Evaluate if user answer is correct."""
# Simple string comparison - can be enhanced with semantic matching
return user_answer.strip().lower() == correct_answer.strip().lower()
def _estimate_item_difficulty(self, skill: str, question: str) -> float:
"""Estimate item difficulty based on skill and question complexity."""
# Base difficulty on skill type
skill_difficulties = {
"algebra_simplification": 0.3,
"linear_equations": 0.5,
"fraction_operations": 0.6,
"ratios": 0.5
}
base_difficulty = skill_difficulties.get(skill, 0.5)
# Adjust based on question length (proxy for complexity)
length_factor = min(len(question) / 100.0, 0.3)
return np.clip(base_difficulty + length_factor, 0.1, 0.9)
|