Spaces:
Sleeping
Sleeping
File size: 12,232 Bytes
cd8c2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import numpy as np
import json
from typing import Dict, List, Any, Tuple
from dataclasses import dataclass
from datetime import datetime, timedelta
import sqlite3
@dataclass
class SkillMastery:
skill: str
theta: float # IRT ability parameter (-3 to +3)
sem: float # Standard error of measurement
last_practiced: datetime
practice_count: int
success_rate: float
@dataclass
class ItemResponse:
item_id: str
skill: str
correct: bool
response_time: float
hints_used: int
difficulty: float
timestamp: datetime
class KnowledgeTracer:
"""Knowledge tracing system using Item Response Theory and Bayesian updating."""
def __init__(self, db_path: str = "knowledge_tracing.sqlite"):
self.db_path = db_path
self._init_database()
self.skill_masteries: Dict[str, SkillMastery] = {}
self.response_history: List[ItemResponse] = []
def _init_database(self):
"""Initialize database for storing tracing data."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS skill_mastery (
skill TEXT PRIMARY KEY,
theta REAL DEFAULT 0.0,
sem REAL DEFAULT 1.0,
last_practiced TIMESTAMP,
practice_count INTEGER DEFAULT 0,
success_rate REAL DEFAULT 0.0
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS item_responses (
id INTEGER PRIMARY KEY AUTOINCREMENT,
item_id TEXT,
skill TEXT,
correct BOOLEAN,
response_time REAL,
hints_used INTEGER,
difficulty REAL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE INDEX IF NOT EXISTS idx_skill_responses ON item_responses(skill)
""")
def update_mastery(self, response: ItemResponse) -> float:
"""Update skill mastery using Bayesian updating with IRT."""
skill = response.skill
# Load current mastery if exists
if skill not in self.skill_masteries:
self._load_skill_mastery(skill)
current = self.skill_masteries.get(skill, SkillMastery(
skill=skill, theta=0.0, sem=1.0,
last_practiced=datetime.now(),
practice_count=0, success_rate=0.0
))
# IRT 2-parameter model update
# P(correct) = 1 / (1 + exp(-a*(theta - b)))
# where a = discrimination (fixed at 1.0), b = difficulty
# Calculate likelihood of response given current theta
logit = current.theta - response.difficulty
p_correct = 1.0 / (1.0 + np.exp(-logit))
# Bayesian update using response as evidence
# Posterior precision = prior precision + information
prior_precision = 1.0 / (current.sem ** 2)
# Information function for 2PL IRT
information = p_correct * (1 - p_correct)
posterior_precision = prior_precision + information
posterior_sem = np.sqrt(1.0 / posterior_precision)
# Update theta based on response
if response.correct:
# Correct response increases theta
theta_update = (current.theta / (current.sem ** 2) +
information * response.difficulty) / posterior_precision
else:
# Incorrect response decreases theta
theta_update = (current.theta / (current.sem ** 2) -
information * (1 - response.difficulty)) / posterior_precision
# Apply forgetting factor for time since last practice
days_since_practice = (response.timestamp - current.last_practiced).days
forgetting_factor = np.exp(-0.05 * days_since_practice) # 5% decay per day
theta_update *= forgetting_factor
# Update mastery
updated = SkillMastery(
skill=skill,
theta=np.clip(theta_update, -3.0, 3.0),
sem=posterior_sem,
last_practiced=response.timestamp,
practice_count=current.practice_count + 1,
success_rate=self._update_success_rate(current.success_rate, current.practice_count, response.correct)
)
self.skill_masteries[skill] = updated
self.response_history.append(response)
# Save to database
self._save_skill_mastery(updated)
self._save_response(response)
return updated.theta
def _update_success_rate(self, current_rate: float, count: int, correct: bool) -> float:
"""Update exponential moving average of success rate."""
alpha = 0.1 # Learning rate for EMA
if count == 0:
return 1.0 if correct else 0.0
return alpha * (1.0 if correct else 0.0) + (1 - alpha) * current_rate
def get_mastery_probability(self, skill: str) -> float:
"""Convert theta to mastery probability (0-1 scale)."""
if skill not in self.skill_masteries:
self._load_skill_mastery(skill)
# Use default theta if skill not found
theta = self.skill_masteries.get(skill, SkillMastery(
skill=skill, theta=0.0, sem=1.0,
last_practiced=datetime.now(),
practice_count=0, success_rate=0.0
)).theta
# Logistic transformation: theta=0 -> 0.5, theta=+2 -> 0.88, theta=-2 -> 0.12
return 1.0 / (1.0 + np.exp(-theta))
def calculate_information_gain(self, skill: str, difficulty: float) -> float:
"""Calculate expected information gain for an item."""
if skill not in self.skill_masteries:
self._load_skill_mastery(skill)
# Use default theta if skill not found
theta = self.skill_masteries.get(skill, SkillMastery(
skill=skill, theta=0.0, sem=1.0,
last_practiced=datetime.now(),
practice_count=0, success_rate=0.0
)).theta
# Expected information = I(theta) where I is Fisher information
logit = theta - difficulty
p_correct = 1.0 / (1.0 + np.exp(-logit))
information = p_correct * (1 - p_correct)
return information
def get_next_item_recommendations(self, candidate_items: List[Dict[str, Any]],
max_items: int = 5) -> List[Dict[str, Any]]:
"""Recommend next items based on information gain and spacing."""
scored_items = []
for item in candidate_items:
skill = item['skill']
difficulty = item['difficulty']
# Calculate information gain
info_gain = self.calculate_information_gain(skill, difficulty)
# Calculate spacing benefit (higher for items not practiced recently)
if skill in self.skill_masteries:
days_since = (datetime.now() - self.skill_masteries[skill].last_practiced).days
spacing_bonus = min(days_since / 7.0, 1.0) # Max bonus after 1 week
else:
spacing_bonus = 1.0 # New skill gets max bonus
# Calculate mastery urgency (higher for lower mastery)
mastery = self.get_mastery_probability(skill)
urgency = 1.0 - mastery
# Combined score
score = 0.4 * info_gain + 0.3 * spacing_bonus + 0.3 * urgency
scored_items.append({
**item,
'score': score,
'information_gain': info_gain,
'spacing_bonus': spacing_bonus,
'urgency': urgency,
'current_mastery': mastery
})
# Sort by score and return top items
scored_items.sort(key=lambda x: x['score'], reverse=True)
return scored_items[:max_items]
def get_research_metrics(self, skill: str = None) -> Dict[str, Any]:
"""Calculate research metrics for evaluation."""
if skill:
responses = [r for r in self.response_history if r.skill == skill]
else:
responses = self.response_history
if not responses:
return {}
# Basic metrics
total_responses = len(responses)
correct_responses = sum(1 for r in responses if r.correct)
accuracy = correct_responses / total_responses
# Time metrics
avg_response_time = np.mean([r.response_time for r in responses])
# Hint metrics
hints_per_response = np.mean([r.hints_used for r in responses])
# Learning gain (compare first vs last 10 responses)
if len(responses) >= 20:
early_responses = responses[:10]
late_responses = responses[-10:]
early_accuracy = sum(1 for r in early_responses if r.correct) / len(early_responses)
late_accuracy = sum(1 for r in late_responses if r.correct) / len(late_responses)
learning_gain = late_accuracy - early_accuracy
else:
learning_gain = 0.0
# Retention (performance on items practiced > 3 days ago)
retention_items = [r for r in responses
if (datetime.now() - r.timestamp).days > 3]
if retention_items:
retention_rate = sum(1 for r in retention_items if r.correct) / len(retention_items)
else:
retention_rate = None
return {
'total_responses': total_responses,
'accuracy': accuracy,
'avg_response_time': avg_response_time,
'hints_per_response': hints_per_response,
'learning_gain': learning_gain,
'retention_rate': retention_rate,
'skill_masteries': len(self.skill_masteries)
}
def _load_skill_mastery(self, skill: str):
"""Load skill mastery from database."""
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.execute(
"SELECT * FROM skill_mastery WHERE skill = ?", (skill,)
)
row = cursor.fetchone()
if row:
self.skill_masteries[skill] = SkillMastery(
skill=row['skill'],
theta=row['theta'],
sem=row['sem'],
last_practiced=datetime.fromisoformat(row['last_practiced']),
practice_count=row['practice_count'],
success_rate=row['success_rate']
)
def _save_skill_mastery(self, mastery: SkillMastery):
"""Save skill mastery to database."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
INSERT OR REPLACE INTO skill_mastery
(skill, theta, sem, last_practiced, practice_count, success_rate)
VALUES (?, ?, ?, ?, ?, ?)
""", (
mastery.skill,
mastery.theta,
mastery.sem,
mastery.last_practiced.isoformat(),
mastery.practice_count,
mastery.success_rate
))
def _save_response(self, response: ItemResponse):
"""Save item response to database."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
INSERT INTO item_responses
(item_id, skill, correct, response_time, hints_used, difficulty, timestamp)
VALUES (?, ?, ?, ?, ?, ?, ?)
""", (
response.item_id,
response.skill,
response.correct,
response.response_time,
response.hints_used,
response.difficulty,
response.timestamp.isoformat()
))
|